<|lI!

Interactive System Productivity Facility (ISPF)

Dialog Developer’s Guide and Reterence

z/08 Version 1 Release 2.0

SC34-4821-01

<|lI!

Interactive System Productivity Facility (ISPF)

Dialog Developer’s Guide and Reterence

z/08 Version 1 Release 2.0

SC34-4821-01

Note
FBefore using this document, read the general information under mahcﬁlan_pa.ge_%i

Second Edition (October 2001)

This edition applies to ISPF for Version 1 Release 2 of the licensed program z/OS (program number 5694-A01) and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30
a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)
284-4721.

You can also order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address below.

A form for comments appears at the back of this publication. If the form has been removed, and you have
ISPF-specific comments, address your comments to:

International Business Machines Corporation

Software Reengineering

Department G7IA / Building 503

Research Triangle Park, NC 27709-9990

FAX (United States & Canada): 1+800+227-5088

IBMLink (United States customers only): CIBMORCF@RALVM17
IBM Mail Exchange: USIB2HPD@VNET.IBM.COM

Internet: USIB2HPD@VNET.IBM.COM

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

Title and order number of this book

Page number or topic related to your comment

The ISPF development team maintains a site on the World-Wide Web. The URL for the site is:
http://www.software.ibm.com/ad/ispf

© Copyright International Business Machines Corporation 1980, 2001. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures

Preface.

About This Book.

Who Should Use This Book
What Is in This Book? .
Notation Conventions .
Terms Used in This Book .

Using LookAt to look up message
explanations .
Accessing licensed books on the Web

Summary of Changes
ISPF Product Changes.
ISPF DM Component Changes
ISPF PDF Component Changes
ISPF SCLM Component Changes .
ISPF Client/Server Component Changes .
ISPF User Interface Considerations .
ISPF Migration Considerations.
ISPF Profiles . .
Year 2000 Support for ISPF

What’s in the z/0S V1R2.0 ISPF
library? .

z/0S V1R2.0 ISPF .

Elements and Features in z/0S

The ISPF User Interface

Some Terms You Should Know .

How to Navigate in ISPF without Using Actlon

Bars.

How to Nav1gate in ISPF Usmg the Actlon Bar

Interface
Action Bars
Action Bar Choices .
Point-and-Shoot Text Flelds .
Function Keys.
Selection Fields .

Command Nesting .

Chapter 1. Introduction to ISPF.
What Is ISPF? .
What Is a Dialog?.

Functions

Variables.

Command Tables .

Panel Definitions .

Message Definitions .

File-tailoring Skeletons .

Tables

© Copyright IBM Corp. 1980, 2001

. Vil

. ix
. ix
. ix
. xi
. xi

- Xl
. Xxiii

. XV
. XV

. XV

. Xvii
. Xviii
. xviii
. XViii
. Xix
. XiX
. XiX

. XXi
. xxi

. XXiii
. XXVii
. Xxvil

. xxviii

. Xxviii
. XXviii

. XXX

. Xxxii
. Xxxii
. Xxxiii
. XXxiv

W WWWNNNR R =,

What Does a Dialog Do? .3
Developing a Dialog. .4
How Dialog Elements Interact .5
Dialog Variables . .7
Chapter 2. Controlling ISPF Sessions . . 9
Dialog Control and Data Flow .9
Processing a Dialog . . .9
Starting a Dialog .10
Syntax for Issuing the ISPSTART Command . 10
Using the ISPSTART Command . .17
Invoking a Dialog from a Selection Panel .18
Invoking a Dialog from a Master Application
Menu . .18
What the SELECT Serv1ce Does . 19
Invoking the SELECT Service .21
Terminating a Dialog . .21
Return Codes from Termlnatlng Dlalogs .22
An Example Using the ZISPFRC Return Code. . 23
ISPF Test and Trace Modes . .o .24
Test Modes .24
ISPF Trace Modes . .25
Invoking Authorized Programs . . 25
Invoking TSO Commands . 26
Compiled REXX Requirements . . 26
CLIST Requirements . 26
Restrictions to Using Attentlon EX1ts from CLISTs 27
Examples of CLIST Attention Exit Process Flow 27
Using APL2 . 28
Invoking APL2 . . .28
Executing APL2 Functions . 30
Invoking ISPF Dialog Services in the APL2
Environment . . . 31
APL2 Workspace as the ISPF Functlon Pool .31
Interface between ISPF and APL2 . .32
Subtasking Support. .33
ESTAE Restrictions . . 33
ISPF Services in Batch Mode . 33
Command Processors in the TSO Batch
Environment . . . 33
Batch Display Facility for Background Panel
Processing . . .35
ISPF Graphical User Interface in Batch Mode . .38
Chapter 3. Introduction to Writing
Dialogs . .4
Using the Display Serv1ces .41
Example: Creating a Display w1th TBDISPL .42
Processing Selected Rows. .. 44
Adding Table Rows Dynamically durlng Table
Display Scrolling . .45
Example: Dynamic Table Expansmn . . 49
Using the Variable Services . . 60
Searching Variable Pools . . . 61
SELECT Service and Variable Access . . 61

iii

Function Pools and Dialog Functions . . 62
Command Procedures, Program Functions, and
Function Pools . . 63
Use a Variable Service to Create or Delete
Defined Variables . 64
Creating Implicit Variables . . 64
Naming Defined and Implicit Varlables . . 64
Sharing Variables among Dialogs . . 65
Saving Variables across ISPF Sessions. . 65
Removing Variables from the Shared or Proﬁle
Pool . . 66
Read-Only Proﬁle Pool Extens10n Varlables . 66
Variables Owned by ISPF. . . 67
Variable Formats . . 68
System Variables Communlcate between D1alogs
and ISPF . . 68
Using VDEFINE, VDELETE VRESET VCOPY
VMASK, and VREPLACE . 69
Using the VGET, VPUT, and VERASE Serv1ces . 69
Summary of Variable Services70
Using the Table Services . . 70
Where Tables Reside .70
Accessing Data . .71
Services That Affect an Entlre Table .72
Services That Affect Table Rows .72
Protecting Table Resources .72
Example: Create and Update a S1mple Table .73
Determining Table Size .73
Example: Function Using the DISPLAY TBGET
and TBADD Services . . . 74
Specifying DBCS Search Argument Format for
Table Services e . 82
Using the File-Tailoring Serv1ces . 83
Skeleton Files. . . . 83
Example of Using File- Tallorlng Serv1ces . 84
Using the PDF Services . 85
BROWSE, EDIT, and EDREC . 86
BRIF, EDIF, and EDIREC . . 86
Library Access Services . 86
Where to Find Examples and L1st1ngs of PDF
Services . .o . 87
Using the Mlscellaneous Serv1ces . . 87
CONTROL Service . . 88
GDDM Services . . 88
GETMSG Service . 89
LIBDEEF Service . . 89
LIST Service . . 89
LOG Service . . 89
PQUERY Service. . 89
Chapter 4. Common User Access
(CUA) Guidelines . 91
Using the Dialog Tag Language to Deflne Dlalog
Elements . e .9
Keylists. .91
Action Bars and Pull Downs .92
Pop-Up Windows .92
Moveable Pop-Ups . . . 93
WINDOW Command . . 94
Manual Movement . . . 94
Pop-Up Movement C0n51derat10ns . 95

iV z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Field-Level Help. .95
Extended Help . 95
Keys Help . . 95
Reference Phrase Help . 96
START Service .97
Chapter 5. Panel Definition Statement
Guide . . 99
Introduction to Panel Def1n1t10n Sectrons . . 100
Guidelines for Formatting Panels. . 101
Requirements for Specifying Message and
Command Line Placement . . 103
Factors That Affect a Panel’s Size. . . 107
Syntax Rules and Restrictions for Panel Def1n1t10n 108
Using Blanks and Comments . . 108
Formatting Items in Lists . 109
Using Variables and Literal Expressmns in Text
Fields . . . 109
Validating DBCS Strlngs 11
Special Requirements for Deﬁnrng Certam Panels 111
Defining Menus 111
Defining Table Display Panels . . 129
Formatting Panels That Contain Dynamic Areas 142
Formatting Panels That Contain a Graphic Area 148
Using DBCS-Related Variables in Panels . 149
Using Preprocessed Panels . . 150
Restrictions for Using ISPPREP . . 152
Using ISPPREP with the SELECT Service . . 152
Handling Error Conditions and Return Codes 154
Chapter 6. Panel Definition Statement
Reference . . 157
Defining Panel Sections . . 157
Defining the Action Bar Ch01ce Sect10n . 157
Defining the Action Bar Choice Initialization
Section . 163
Defining the Act10n Bar Ch01ce Processmg
Section . 164
Defining the Area Sectron . 164
Defining the Attribute Section . . 171
Defining the Body Section . . 207
Defining the CCSID Section . 213
Defining the END Section . . 214
Defining the HELP Section . . 214
Defining the Initialization Section . 216
Defining the LIST Section . 216
Defining the Model Section. . 217
Defining the Panel Section . . . 217
Formatting Panel Definition Statements . 228
The Assignment Statement . . 228
The ELSE Statement . . . 234
EXIT and GOTO Statements . 236
The IF Statement . . . 238
The PANEXIT Statement . 242
The REFRESH Statement . 249
The TOG Statement . 250
The VEDIT Statement . 251
The VER Statement . 252
The VGET Statement . . 264
The VPUT Statement . . 265

Using ISPF Control Variables .
ALARM .
ATTR and ATTRCHAR
AUTOSEL .
.CSRPOS .
.CSRROW
.CURSOR.
HELP.
HHELP .
MSG .
NRET.
PFKEY
RESP .
.TRAIL
.ZVARS

Chapter 7. ISPF Help and Tutorial
Panels
Processing Help .
Help Requests from an Applrcat1on Panel
Help Available from a Help Panel
Ending Help .
ISPF Default Keylist for Help Panels
The ISPF Tutorial Panels. e

Chapter 8. Defining Messages .
How to Define a Message .
Message Display Variations.
Messages Tagged with CCSID .
Modeless Message Pop-Ups
Message Pop-Up Text Formatting.
English Rules for Message Text Formattmg
Asian Rules for Message Text Formatting .
Substitutable Parameters in Messages
Syntax Rules for Consistent Message Definition
DBCS-Related Variables in Messages

Chapter 9. Defining File-Tailoring
Skeletons .

Considerations for Data Records .
Considerations for Control Statements .
Sample Skeleton File . .
DBCS-Related Variables in F1le Skeletons .

Chapter 10. Extended Code Page
Support .

Translating Common Characters .
Z Variables .
Panels Tagged with CCSID
Messages Tagged with CCSID .
GETMSG Service . .
TRANS Service.
ISPccsid Translate Load Modules

ISPccsid Translate Load Module Generat1on

Macro . .

ISPCCSID Macro . .

Description of Parameters . .
ISPccsid Translate Load Module Def1n1t1on
Examples.

. 266
. 267
. 268
. 271
. 271
. 272
. 272
. 274
. 274
. 274
. 275
. 276
. 276
. 277
. 277

. 279
. 280
. 280
. 281
. 282
. 282
. 283

. 289
. 290
. 294
. 295
. 296
. 296
. 297
. 297
. 298

299

. 299

. 301
. 301
. 303
. 309
. 309

. 31
. 311
. 311
. 312
. 312
. 312
. 312
. 312

. 313
. 313
. 313

. 314

KANA and NOKANA Keywords.
Character Translation.
Supported CCSIDs
Base Code Pages for Term1nals
Adding Translate Tables for Extended Code Page
Support . .o .
Base CCSIDs
Extended Code Page Translate Tables Prov1ded by
ISPF .
Example of User—Modrﬁable ISPF Translate
Table .

Appendix A. Character Translations
for APL, TEXT, and Katakana.

Appendix B. ISPTTDEF Specify
Translate Table Set .

Appendix C. Diagnostic Tools and
Information
ISPF Debug Tools .
Diagnostic Information . .
Using the ENVIRON System Command
ENVIRON Command Syntax and Parameter
Descriptions .
Abend Panels Provrde Dragnostrc Informatron
ISPF Statistics Entry in a PDS Directory
Common Problems Using ISPF
Messages . . S
Unexpected Output
Abend Codes and Information
Terminal I/O Error Codes .
Register Linkage Conventions .
Obtaining Message IDs . . .
Installation, Maintenance, and Mrgrahon
Diagnostics . .
Common Installatlon and Malntenance
Problems .
Migration from Vers1on 2 and Vers1on 3 to
Version 4.2

Appendix D. Dialog Variables
PDF Non-Modifiable Variables

Appendix E. System Variables .

Time and Date .

General .
ZSCRNAME Exarnples .

Terminal and Function Keys

Scrolling . .

PRINTG Cornrnand

Table Display Service.

LIST Service.

LOG and LIST Data Sets

Dialog Error.

Tutorial Panels .

Selection Panels

. 314
. 315
. 316
. 318

. 318

. 320

. 321

. 321

. 325

. 329

. 331
. 331
. 331
. 332

. 332

338

. 340
. 341
. 341
. 343
. 343
. 345
. 346
. 347

. 347
. 348

. 348

. 351
. 356

. 357
. 357
. 358
. 361
. 362
. 364
. 365
. 365
. 365
. 365
. 366
. 366

. 366

DTL Panels or Panels Conta1n1ng a)PANEL Sectlon 366

Contents

\'%

Notices367 Index.3N
Programming Interface Information 368
Trademarks368

Vi z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Figures

—_

AL

® N

11.
12.

13.
14.

15.
16.
17.
18.
19.
20.

21.

22.

23.

24.
25.
26.
27.
28.

29.
30.

31.

32.
33.
34.
35.

36.
37.
38.
39.
40.
41.
42.
43.

Panel with an Action Bar Pull-Down Menu
Pop-Up Selected from an Action Bar
Pull-Down ..

Panel with an Actlon Bar and
Point-and-Shoot Fields .

An Unavailable Choice on a Pull- Down
Using ISPF .

Typical Dialog Organlzatlon Startlng w1th a

Menu .

Typical Dialog Startrng w1th a Functlon
Control and Data Flow .

Application Dialog Running under ISPF
Sample Selection Panel.

ISPF Master Application Menu (ISP@MSTR)

SELECT Service Used to Invoke and Process a

Dialog

Sample Background ISPF]ob .
Sample Dialog Usrng System Variable
ZISPFRC . S

MVS Batch Job ..

TBDISPL Panel Definition.

TBDISPL Display. . .
Panel Definition Dynamic Table Expans1on
PL/I Dialog Function Example Program
Initial Display for Dynamic Table Expansion
Example

Second Display for Dynamlc Table Expansmn

Example .
Third Display for Dynamlc Table Expanslon
Example

Fourth Display for Dynamlc Table Expansmn

Example .
Control and Data Flow in a D1alog

CLIST to Create a Read-Only Extension Table

Panel Definition SER

Panel Display SER . .

Panel Display SER with an ISPF—prov1ded
Message Superimposed on Line 1 .
Message EMPX21

Panel Display SER—Short Form of Message
EMPX210 Superimpose Line 1

Panel Display SER—Long Form of Message
EMPX210 Superimposed on Line 3.

Panel Definition DATA.

Panel Display DATA

Sample Skeleton File .

Example Panel Displaying Three Pop-Up
Windows .

Reference Phrase Help Example

Sample Panel Definition Format

CUA Panel Definition.

Sample CUA Panel (SAMPAN on ISPKLUP)
Example of a Menu (ISP@MSTR) .

Master Application Menu Definition .
Master Application Menu DTL Source

ISPF Primary Option Menu Definition

© Copyright IBM Corp. 1980, 2001

XXiX

. XXX

. XXX

XXX1

.24
. 34
.42
. 43
50
51

. 57
. 58
. 59
. 62

67
. 76
. 76

.77
.78

. 78

.79
. 80
. 81
. 84

. 93
.97

. 101

. 105
107

. 112
. 117

118
123

44.
45.
46.
47.
48.

49.
50.

51.
52.
53.

54.
55.
56.
57.
58.
59.
60.
61.
62.

63.
64.
65.
66.
67.
68.

69.

70.
71.
72.
73.
74.

75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

85.

86.

87.

Master Application Menu DTL Source
Parts of a TBDISPL display .

Table Display Panel Definition .

Table as Displayed .

Table Display Panel Def1n1t10n w1th Several
Model Lines .

Table as Displayed wrth Several Model L1nes

Panel Definition Illustrating SCROLL and
EXTEND . Lo
ZGE Characteristics .

Dynamic Area with Character Attr1butes

Panel for Specifying Preprocessed Panel Input

. 151
. 163
. 168
. 168

and Output Files (ISPPREPA) .

Action Bar Section Example.

Invalid Scrollable Area Definition .

Valid Scrollable Area Definition

Scrollable Area Screen Display (Part 1 of 3)

Scrollable Area Screen Display (Part 2 of 3)

Scrollable Area Screen Display (Part 3 of 3)

Panel Definition Illustrating a Graphic Area

Panel Definition with Graphic Area .

Definition of Panel Graphic Area with

Overlapping Text Field .

Attribute Section in a Panel Deflnrtron

Group Box Definition .

Sample Panel Definition . .

Sample Panel—When Displayed .

Panel Processing

Sample Panel Deflnrtron wrth TRANS and

TRUNC

Sample Panel Def1n1t10n w1th IF and ELSE

Statement

Standard Parameter L1st Format

TOG Statement Example .

VEDIT Example. . .
Sample Panel Definition wrth Verrflcatlon

Sample Panel Definition with Control

Variables .

Example of Z Varrable Place Holders

Help Panel Flow Lo

Sample Tutorial Hierarchy . .

Sample Tutorial Panel Definition (Panel B)

Sample Tutorial Panel Definition (Panel FZ)

Sample Messages . .

Example Syntax for Deflnlng Messages

Sample Skeleton File . .

Basic ISP00111 Translate Module .

ISP00222 Translate Module with Two Drrect

CCSID Entries

Translation to CCSID 00500 from CCSID

XXXXX

Translation to CCSID XXXXX from CCSID

00500

Internal Character Representatrons for APL

Keyboards

124

. 130
. 140
. 141

. 141
142

. 144
. 146

147

170
170
171
177

. 178

. 178

200

. 205
. 212
. 213
. 227

. 232

. 236
. 245
. 251
. 252

263

. 267

278

. 281
. 285

286
287

. 290

290

. 309
. 314

. 314

. 319

. 319

. 326

vii

88. Internal Character Representations for Text 90. Error Recovery Panel (ISPPRS1) 338
Keyboards327 91. Common Abend Codes (ISP93010) 339
89. ENVIRON Settings Panel (ISPENVA) 332 92. Additional Diagnostic Information (ISPPRS2) 339

viii z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Preface

This book describes how to use the ISPF Dialog Manager elements from programs
or command procedures.

This book is intended to help you learn about and use the ISPF product.

About This Book

This book is a guide for learning and using the Dialog Manager component of the
ISPF product. It contains information on controlling ISPF sessions, defining ISPF
panels, and defining messages. It is supplemented by ISPF Examples which
contains examples of working dialogs.

The ISPF Dialog Developer’s Guide and Reference provides:
* An introduction to ISPF basics
* Information on running ISPF sessions
* Guideline information for:
— Writing panel definitions
— Defining messages
— Defining file-tailoring skeletons
* A system variable summary.

Who Should Use This Book

This book is for programmers who develop ISPF application dialogs, system
analysts, and system programmers.

Users are expected to know at least one of the ISPF-supported programming or
command procedure languages: Assembler, PL/I, COBOL, VS FORTRAN, C,
Pascal, APL2, CLIST, and REXX.

Users also should be familiar with the MVS operating system.

What Is in This Book?
Chapter 1. Introduction to ISPH describes what ISPF is and what it does for you. In

previous releases of the product, the information in this chapter was contained in
ISPF Dialog Management Guide and Reference

Chapter 2_Controlling ISPE Sessiond, describes how to start and stop an ISPF

session and how to use many of the ISPF facilities. In previous releases of the
product, the information in this chapter was contained in ISPF Dialog Management
Guide and Reference

, provides introductory information on
how to write dialogs using the ISPF services for display, variable, table, file
tailoring, and PDEF. In previous releases of the product, the information in this
chapter was contained in ISPF Services Guide

© Copyright IBM Corp. 1980, 2001 ix

X

rhap’rpr 4 Common User Access (CUA) Guidelined, describes how ISPF supports
the Common User Access (CUA) guidelines. In previous releases of the product,
the information in this chapter was contained in ISPF Dialog Management Guide and
Reference

idd, provides guide-type information for
sections, panel definition statements, and control variables. It explains how to
create panels using the panel definition statements. In previous releases of the
product, the information in this chapter was contained in ISPF Dialog Management
Guide and Reference

, provides reference information on
how to create ISPF panels using Dialog Tag Language (DTL) and the ISPF DTL
conversion utility, DTL and panel definition statements, or panel definition
statements. In previous releases of the product, the information in this chapter was
contained in ISPF Dialog Management Guide and Reference

Chapter 7 ISPE Help and Tutorial Paneld, describes online help and tutorial panels

that a developer can include to provide online information for an application user.
In previous releases of the product, the information in this chapter was contained
in ISPF Dialog Management Guide and Reference

Chapter 8 Defining Messaged, describes how to create and change ISPF messages

using an existing message definition or the MSG and MSGMBR tags of the DTL. In
previous releases of the product, the information in this chapter was contained in
ISPF Dialog Management Guide and Reference

Chapter 9 Defining File-Tailaring Skeletand, describes ISPF skeleton definitions and

how to create or change skeletons. In previous releases of the product, the
information in this chapter was contained in ISPF Dialog Management Guide and
Reference

, describes how extended code page
support allows panels, messages, and variable application data to be displayed
correctly on terminals using any of the supported code pages. In previous releases
of the product, the information in this chapter was contained in ISPF Dialog
Management Guide and Reference

, contains the
character translation tables for APL, TEXT, and Katakana. In previous releases of
the product, the information in this appendix was contained in ISPF Dialog
Management Guide and Reference

, contains a program, ISPTTDEF,
that can be used for specifying the set of terminal translate tables to be used. In
previous releases of the product, the information in this appendix was contained in
ISPF Dialog Management Guide and Reference

ion, contains information to help you
diagnose ISPF problems. In previous releases of the product, the information in
this appendix was contained in ISPF Dialog Management Guide and Reference

Wppendix D _Dialog Variabled, describes the ISPF dialog function pool variables

that are both read from and written to by several of the PDF library access
services. In previous releases of the product, the information in this appendix was
contained in ISPF Dialog Management Guide and Reference

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

Appendix E. System Variabled, describes system variables with type and pool

information. The variables are also discussed with the ISPF service to which they
apply. In previous releases of the product, the information in this appendix was
contained in ISPF/PDF Guide and Reference

Notation Conventions

This book uses the following notation conventions:
* Uppercase commands and their uppercase parameters to show required entry
* Lowercase characters to show parameters that can be specified by the user

* Brackets [] to show optional parameters (required parameters do not have
brackets)
* An OR (I) symbol to show two or more parameters you must select from

 Stacked parameters to show two or more parameters you can select from

Note: You can choose one or none. If you choose none, ISPF uses the
underscored parameter.

* Braces {} with stacked parameters to show that you must select one. For
example:
{KEYWORD1 (variable) [OPTPAR1(variable)]}
KEYWORD2 (variable)}

{
{KEYWORD3 (variable) [OPTPAR2(variable)]}
{KEYWORD4 (variable) [OPTPAR3(variable)]}

indicates that you must select either KEYWORD1, KEYWORD2, KEYWORD3, or
KEYWORDA4.

e Underscores to show defaults

* Ellipsis (...) to show that the parameter can be repeated, specifying additional
items of the same category.

Terms Used in This Book

In this book, there are terms that might have a different meaning or might not be
clear to you. The following list contains those terms and their definition:

Terminal. Any of the supported display devices
Library. A partitioned data set

Data set. A sequential or partitioned data set
Command procedure. A CLIST or REXX EXEC

Menu. Selection panel.

Preface X1

Xii z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Using LookAt to look up message explanations

LookAt is an online facility that allows you to look up explanations for z/OS
messages. You can also use LookAt to look up explanations of system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:

www . ibm.com/servers/eserver/zseries/zos/bkserv/lookat/Tookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
the News and Help link or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following:

Tookat iecl92i
This results in direct access to the message explanation for message IEC1921.

To find a message explanation from the LookAt Web site, simply enter the message
ID and select the release you are working with.

Note: Some messages have information in more than one book. For such
messages, LookAt prompts you to choose which book to open.

Accessing licensed books on the Web
z/0OS Version 1 Release 2.0 licensed documentation in PDF format is available on
the Internet at the IBM Resource Link Web site at:

http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS Version 1 Release 2.0
license. Access to these books requires an IBM Resource Link Web userid and
password, and a key code. With your z/OS Version 1 Release 2.0 order you
received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:
1. Log on to Resource Link using your Resource Link userid and password.
2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.
4. Click on Request Access to Licensed books.
5. Supply your key code where requested and click on the Submit button.

© Copyright IBM Corp. 1980, 2001 xiii

If you supplied the correct key code you will receive confirmation that your
request is being processed. After your request is processed you will receive an
e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

Log on to Resource Link using your Resource Link userid and password.
Click on Library.

Click on zSeries.

Click on Software.

Click on z/OS Version 1 Release 2.0.

Access the licensed book by selecting the appropriate element.

o0k~ wN =

Xiv z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Summary of Changes

z/0S V1R2.0 ISPF contains the following changes and enhancements:
 ISPF Product and Library Changes

* ISPF Dialog Manager Component Changes (including DTL changes)
* ISPF PDF Component Changes

* ISPF SCLM Component Changes

 ISPF Client/Server Component Changes

| ISPF Product Changes

I Changes to the ZENVIR variable. Characters 1 through 8 contain the product name
I and sequence number in the format ISPF x.y, where x.y indicates:
| * <= 4.2 means the version.release of ISPF

| * = 4.3 means ISPF for OS/390 release 2

| e =44 means ISPF 4.2.1 and ISPF for OS/390 release 3

| * = 4.5 means ISPF for OS/390 Version 2 Release 5.0

| * = 4.8 means ISPF for OS/390 Version 2 Release 8.0

| e = 5.0 means ISPF for OS/390 Version 2 Release 10.0

I « OR

| * = 5.0 means ISPF for z/OS Version 1 Release 1.0

| * = 5.2 means ISPF for z/OS Version 1 Release 2.0

I The ZENVIR variable is used by IBM personnel for internal purposes. The x.y

I numbers DO NOT directly correlate to an ISPF release number in all cases. For

| example, as shown above, a ZENVIR value of 4.3 DOES NOT mean ISPF Version 4
| Release 3. NO stand-alone version of ISPF exists above ISPF Version 4 Release 2

| Modification 1.

I The ZOS390RL variable contains the ISPF release on your system.
I The ZISPFOS system variable contains the level of ISPF code that is running as
I part of the operating system release on your system. This might or might not

| match ZOS390RL. For this release, the variable contains ISPF for z/OS 01.02.00.

| New system variables:

I ZDAYOFWK
I The day of the week.

I The ISRDDN utility is now documented in the ISPF User’s Guide.

| ISPF DM Component Changes

The DM component of ISPF includes the following new functions and

enhancements:

* Add support for "VER(&variable, IPADDR4)".

¢ Add the NOSETMSG parameter to the CONTROL Service.

* Add the LFORMAT parameter to the VDEFINE Service to allow defining like
format variables in a list.

* Change tutorial processing to eliminate the "End of data” message on scrollable
area panels that display the entire scrollable area on the screen (no More: + - is
displayed). This change eliminates the extra enter the user had to execute before
continuing to the next panel.

© Copyright IBM Corp. 1980, 2001 Xv

xvi

Issue a TSO line message when a help panel is not found and continue the
dialog. Previously ISPF issued a severe error message when a help panel could
not be found.

Display a message indicating a message is not found when running in Dialog
Test and allow the dialog to continue.

Add support for extended SBCS and DBCS CCSIDs:

— 1159 Traditional Chinese

— 1364 Korean

1371 Traditional Chinese

1388 Simplified Chinese

1390 Japanese

— 1399 Japanese

Add new Z variables to support 5 character code pages and character sets,
ZTERMCP5 and ZTERMCSS respectively.

Add new variable ZDAYOFWK to show the day of the week.

Enhance the Reflist function of TEST option 7.6 to allow better list management.
Enhance Locate and Find for Dialog Test Variables (option 7.3).

A new exec called ISPCMDTB to convert ISPF command tables to DTL.

A new Configuration Table variable to allow SCROLL defaults.

A new Configuration Table variable to allow STATUS AREA defaults.

ISPDTLC enhancements:

ISPDTLC changes include new invocation options, new tags, and new tag.
attributes as ISPF extensions to the Dialog Tag Language

General improvements:

New invocation options:
— no new invocation options in this release

New tags:
- DLDIV, DTDIV, DTHDIV for dividers within the DL tag
— PLDIV, PTDIV for dividers within the PARML tag

Replication added to predefined entities. For example, >SYM(5); will create
the string ">>>>>’ in the substituted text.

National language text strings are now accessible as entities. For example,
&command; will create the string ‘Command’ or its translated equivalent in the
substituted text.

New ENTITY keywords COPIES, X2C and ATTR.
New macro tag default initialization processing syntax.
<?dummy ?var=value>

New Predefined ENTITY keywords cmdpmt (&cmdpmt;) and rptr (&rptr;).

New or changed tag attributes:

Tag name Attribute update
CHECKI Add support for "VER(&variable, IPADDR4)"
COMPOPT Add ADD.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

Tag name Attribute update
DL Add FORMAT.

Support multiple DT tags for each DD tag.
Change TSIZE to support multiple values.

Each TSIZE value implies a DT tag.

DT Add FORMAT, NOSKIP.

DTAFLD Add AUTOTYPE, AUTOVOL, AUTODMEM.
HELP Add ZUP, ZCONT.

Hn Add COMPACT.

HP Add INTENSE.

NOTE Add NOSKIP.

NT Add NOSKIP.

PANEL Add ZUP, ZCONT, AUTONRET, AUTOTCMD.
PARML Add FORMAT.

Support multiple PT tags for each PD tag.
Change TSIZE to support multiple values.

Each TSIZE value implies a PT tag.
PT Add FORMAT, SKIP.
SELFLD Add SELCHECK.

Support INIT=init-value for single-choice selection fields.

ISPF PDF Component Changes

The ISPF PDF component contains the following new functions and enhancements:

* A MEMBER command has been added to data set list (option 3.4) to allow the
partitioned data sets in the list to be searched for a specific member.

* When the EDIT service is specified with an initial macro, parameters can now be
specified for the initial macro.

* A FIND command has been added to member list to allow a string to be
searched for in any of the displayed statistics.

* A SRCHFOR command has been added to data set list to allow SuperC to be
invoked to search the listed data sets for strings.

* Move/Copy will now dynamically calculate the sized for the IEBCOPY SYSUT3
and SYSUT4 data sets.

* A QUERYENQ service has been added to retrieve ENQ information about a data
set in use.

* LMF has been removed from the ISPF product.

* A new SuperC option FINDALL has been added to specify that all strings must
be found to issue a "strings found” return code.

¢ LMPRINT will now allow the INDEX parameter to be specified for a record
format U data set.

* Foreground and Batch now support the z/OS C/C++ compiler.

Summary of Changes ~ XVii

* A new AUTOTYPE command can be set to a PFKEY to retrieve a data set name
or pattern entered on a panel based on data sets that start with that partial
name.

* Data sets with an LRECL less than 10 bytes can be edited or viewed.

e The Edit CUT and PASTE command defaults have been added to the ISPF
Configuration Table.

¢ The Edit CUT and PASTE default behaviors have been modified to use CUT
REPLACE and PASTE KEEP.

* The BARRIER keyword has been added to the SELECT for Edit macros.

* A program called ISREMSPY that can be invoked from an Edit macro to display
the current Edit data.

¢ The Edit macro commands CURSOR, LINENUM and DISPLAY_LINES can
retrieve line numbers greater than 999999.

ISPF SCLM Component Changes

The ISPF SCLM component contains the following new functions and
enhancements:

* Several enhancements to the Library Utility:
— A member action to initiate Promotion on a member.
— REFRESH command to update the member list contents.

— HIER ONIOFF command to switch between full hierarchy view and single
group view.

— Edit action can create a new member when entered on the command line.
— Ability to select deletion of accounting data or build map only.

* New FLMLRBLD macro to select automated rebuild for members with a
specified language on promotion to listed groups.

* Improved edit models for SCLM services.

* VOL keyword on the FLMCPYLB and FLMSYSLB macros allowing reference to
uncatalogued data sets.

* VIO keyword on the FLMALLOC macro to override the SCLM-calculated
default unit of DASD or VIO for temporary data sets.

* Supplied parsers and translators are all loaded RMODE(31).

ISPF Client/Server Component Changes

The ISPF Client/Server Component enables a panel to be displayed unchanged
(except for panels with graphic areas) at a workstation using the native display
function of the operating system of the workstation. ISPF manuals call this
"running in GUI mode.”

There are no changes to the ISPF Client/Server for this release.

ISPF User Interface Considerations

xviii

Many changes have been made to the ISPF Version 4 user interface to conform to
CUA guidelines. If you prefer to change the interface to look and act more like the
Version 3 interface, you can do the following:

* Use the CUAATR command to change the screen colors

* Use the ISPF Settings panel to specify that the TAB or HOME keys position the
cursor to the command line rather than to the first action bar item

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

* Set the command line to the top of the screen by deselecting Command line at
bottom on the ISPF Settings panel

* Set the primary keys to F13-24 by selecting 2 for Primary range on the Tailor
Function Key Definition Display panel

* Use the KEYLIST OFF command to turn keylists off
* Use the PSCOLOR command to change point-and-shoot fields to blue.

¢ Change the DFLTCOLR field in the PDF configuration table ISRCONFG to
disable action bars and or edit highlighting

ISPF Migration Considerations

When migrating to OS/390 V2R8.0 or higher for the first time, you must convert
your ISPF customization to the new format. Refer to the section entitled The ISPF
Configuration Table in the ISPF Planning and Customizing manual.

When migrating from one version of ISPF to another, you must be sure to
reassemble and re-link the SCLM project definition.

Note: If you are migrating to z/OS V1R2.0 from OS/390 V2R10.0, there are no
migration actions necessary. If you are migrating to z/OS V1R2.0 from a
prior release of OS/390, follow the migration actions for OS/390 V2R10.0.

ISPF Profiles

Major changes were made to the ISPF profiles for ISPF Version 4.2 and OS/390
Version 1 Release 1.0 ISPF. The profiles for ISPF Version 3 and the profiles for
0S/390 ISPF are not compatible. If you are moving back and forth between an
ISPF Version 3 system and OS/390 V1R1.0 or higher system, you must run with
separate profiles. Profiles for OS/390 V1R1.0 and higher are compatible with each
other.

Year 2000 Support for ISPF

ISPF is fully capable of using dates for the year 2000 and beyond. All of your
existing applications should continue to run (some may need minor changes, as
explained below) when the year 2000 comes. The base support for the year 2000
was added to OS/390 Version 1 Release 2.0, but the same level of support is
available for ISPF Version 3.5, ISPF Version 4, and OS/390 Version 1 Release 1.0 as
well. To get support for the earlier versions, be sure that your system has the
correct APARs installed. All ISPF APARs that add or correct function relating to the
year 2000 contain the YR2000 identifier in the APAR text. You should search for
these APARs to ensure you have all the function available.

What function is included?

* ISPF Dialog variable ZSTDYEAR now correctly shows the year for dates past
1999. Earlier versions always showed the first 2 characters of the year as 19.

* A new ISPF dialog variable (ZJ4DATE) is available for Julian dates with a 4-digit
year.

* An ISPF Configuration Table field enables PDF to interpret 2 character year
dates as either a 19xx or 20xx date. The default value is 65. Any 2-character year
date whose year is less than or equal to this value is considered a 20xx date,
anything greater than this value is considered 19xx. To see what value has been
set by the ISPF Configuration Table, use the new ZSWIND variable.

* New parameters in the LMMSTATS service (CREATED4 and MODDATE4) for
specifying 4-character year dates. All existing parameters still exist and you can

Summary of Changes ~ XiX

XX

continue to use them. If both the 2-character year date parameters (CREATED
and MODDATE) and the 4-character year date parameters (CREATED4 and
MODDATE4) are specified, the 2-character versions are used.

* Dialog variables ZLC4DATE and ZLM4DATE have been added.

— You can set them before making an LMMREP or LMMADD call. Do this to
specify a 4-character created or last modified date to set in the ISPF statistics.

— They are set by LMMFIND, LMMLIST and LMMDISP to the current value of
the created and last modified dates in the ISPF statistics.

What might need to change? Some minor changes to your existing ISPF dialogs
might be necessary, especially in ISPF dialogs that use the Library Access Services
to manipulate ISPF member statistics.

* For those services that accept both 4-character year dates and 2-character year
dates, you can specify one or the other. If you specify both, the 2-character year
date is used to avoid affecting existing dialogs. When the 2-character year date is
used, the configuration table field mentioned above is used to determine
whether the date should be interpreted as 19xx or 20xx.

* ISPF will not necessarily show 4-character dates in all circumstances but it will
process them correctly. For example, a member list might only display
2-character year dates but will sort those dates in the proper order.

* SCLM stores dates past the year 1999 in a new internal format. If an accounting
file contains dates in this new format, it cannot be processed by a system
without year 2000 support. Accounting files without dates past 1999 can be
processed with or without the year 2000 support.

* LMF has been removed from the ISPF product. For information about how to
convert from LMF to SCLM refer to the ISPF Planning and Customizing
manual.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

What'’s in the z/OS V1R2.0 ISPF library?

You can order the ISPF books using the numbers provided below.

z/OS V1R2.0 ISPF

Title

Order Number

z/OS V1R2.0 ISPF Dialog Tag Language Guide and Reference

S5C34-4824-01

z/OS V1R2.0 ISPF Planning and Customizing

GC34-4814-01

z/OS V1R2.0 ISPF User’s Guide Volume I

5C34-4822-01

z/OS V1R2.0 ISPF User’s Guide Volume II

SC34-4823-01

z/OS V1R2.0 ISPF Services Guide

5C34-4819-01

z/OS V1R2.0 ISPF Dialog Developer’s Guide and Reference

SC34-4821-01

z/OS V1R2.0 ISPF Reference Summary

S5C34-4816-01

z/OS V1R2.0 ISPF Edit and Edit Macros

SC34-4820-01

z/OS V1R1.0 ISPF Library Management Facility

S5C34-4825-01

z/OS V1R2.0 ISPF Messages and Codes

5C34-4815-01

z/OS V1R2.0 ISPF Software Configuration and Library Manager Project
Manager’s and Developer’s Guide

SC34-4817-01

z/OS V1R2.0 ISPF Software Configuration and Library Manager
Reference

SC34-4818-01

Entire library Bill of Forms

SBOEF-8570

© Copyright IBM Corp. 1980, 2001

xx1

XXii z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Elements and Features in z/0S

You can use the following table to see the relationship of a product you are
familiar with and how it is referred to in z/OS Version 1 Release 2.0. z/OS V1R2.0
is made up of elements and features that contain function at or beyond the release
level of the products listed in the following table. The table gives the name and
level of each product on which a z/OS element or feature is based, identifies the
z/0S name of the element or feature, and indicates whether it is part of the base

or optional. For more compatibility information about z/OS elements see z/OS

Planning for Installation, GC28-1726

Product Name and Level

Name in z/OS

Base or Optional

Decryption

BookManager BUILD/MVS V1IR3 BookManager BUILD optional
BookManager READ/MVS V1IR3 BookManager READ base
MVS/Bulk Data Transfer V2 Bulk Data Transfer (BDT) base
MVS/Bulk Data Transfer File-to-File V2 Bulk Data Transfer (BDT) File-to-File optional
MVS/Bulk Data Transfer SNA NJE V2 Bulk Data Transfer (BDT) SNA NJE optional
IBM OS/390 C/C++ V1IR2 C/C++ optional
DFSMSdfp V1IR3 DFSMSdfp base
DFSMSdss DFSMSdss optional
DFSMShsm DFSMShsm optional
DFSMSrmm DFSMSrmm optional
DFSMS/MVS Network File System V1R3 DFSMS/MVS Network File System base
DFSORT R13 DFSORT optional
EREP MVS V3R5 EREP base
FFST/MVS V1R2 FFST/MVS base
GDDM/MVS V3R2 GDDM base

* GDDM-0OS/2 LINK

* GDDM-PCLK

GDDM-PGF V2R1.3 GDDM-PGF optional
GDDM-REXX/MVS V3R2 GDDM-REXX optional
IBM High Level Assembler for MVS & VM | High Level Assembler base

& VSE VIR2

IBM High Level Assembler Toolkit High Level Assembler Toolkit optional
ICKDSF R16 ICKDSF base
ISPF ISPF base
Language Environment for MVS & VM VIR5 | Language Environment base
Language Environment VIR5 Data Language Environment Data Decryption optional

© Copyright IBM Corp. 1980, 2001

xxiii

Product Name and Level

Name in z/OS

Base or Optional

MVS/ESA SP V5R2.2
BCP BCP or MVS base
ESCON Director Support ESCON Director Support base
Hardware Configuration Definition Hardware Configuration Definition base
(HCD) (HCD) base
JES2 V5R2.0 JES2 optional
JES3 V5R2.1 JES3 base
LANRES/MVS V1R3.1 LANRES base
IBM LAN Server for MVS VIR1 LAN Server base
MICR/OCR Support MICR/OCR Support base
0S/390 UNIX System Services 0OS/390 UNIX System Services base
0S/390 UNIX Application Services 0S/390 UNIX Application Services base
0S/390 UNIX DCE Base Services (OSF 0S/390 UNIX DCE Base Services
DCE level 1.1)
o) base
05/390 UNIX DCE Distributed File 0S/390 UNIX DCE Distributed File
Services (DFS) (OSF DCE level 1.1) Services (DFS)
. optional
08/390 UNIX DCE User Data Prlvacy 05/390 UNIX DCE User Data Privacy p .
SOMobi Application Devel optional
objects Application Development SOMobjects Application Development
Environment (ADE) V1R1 Environment (ADE)
SOMobjects Runtime Library (RTL) SOMobjects Runtime Library (RTL) base
SOMobjects service classes SOMobjects service classes base
Open Systems Adapter Support Facility Open Systems Adapter Support Facility base
(OSA/SF) R1 (OSA/SF)
MVS/ESA RMF V5R2 RMF optional
0S/390 Security Server Resource Access Control Facility (RACF) optional
¢ DCE Security Server
* OS/390 Firewall Technologies
 Lightweight Directory Access Protocol
(LDAP) Client and Server
¢ Open Cryptographic Enhanced Plug-ins
(OCEP)
SDSF V1R6 SDSF optional
SMP/E SMP/E base
Softcopy Print base
SystemView for MVS Base SystemView for MVS Base base
IBM TCP/IP V3R1 TCP/IP base
* TCP/IP CICS Sockets * TCP/IP CICS Sockets * optional
* TCP/IP IMS Sockets * TCP/IP IMS Sockets * optional
* TCP/IP Kerberos e TCP/IP Kerberos * optional
* TCP/IP Network Print Facility (NPF) e TCP/IP Network Print Facility (NPF) * optional
* TCP/IP OS/390 Communications Service |¢ TCP/IP OS/390 Communications Service |¢ optional
IP Applications IP Applications + optional
* TCP/IP OS/2 Offload e TCP/IP OS/2 Offload
TIOC R1 TIOC base
Time Sharing Option Extensions (TSO/E) TSO/E base

V2R5

XXiv

z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Product Name and Level

Name in z/OS

Base or Optional

VisualLift for MVS V1R1.1 * VisualLift Run-Time Environment (RTE) e base
* VisualLift Application Development * optional
Environment (ADE)
VTAM V4R3 with the AnyNet feature VTAM base
3270 PC File Transfer Program base

3270 PC File Transfer Program V1R1.1

Elements and Features in z/0OS

XXv

XXVi z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

The ISPF User Interface

ISPF provides an action bar-driven interface that exploits many of the usability
features of Common User Access (CUA) interfaces. Refer to Object-Oriented Interface
Design: IBM Common User Access Guidelines for additional information.

The panels look different than in Version 3: all screens are in mixed case, and most
have action bars at the top. These action bars give you a new way to move around
in the product as well as access to command nesting. Command nesting allows
you to suspend an activity while you perform a new one rather than having to end
a function to perform another function.

This chapter primarily explains the action bar-driven interface and the use of
ISPF’s graphical user interface (GUI).

Some Terms You Should Know
The following terms are used in this book:

action bar. The area at the top of an ISPF panel that contains choices that give you access to actions available on
that panel. When you select an action bar choice, ISPF displays a pull-down menu.

pull-down menu. A list of numbered choices extending from the selection you made on the action bar. The action
bar selection is highlighted; for example, Utilities in Eigure 1 on page xxix appears highlighted on your screen. You
can select an action either by typing in its number and pressing Enter or by selecting the action with your cursor.
ISPF displays the requested panel. If your choice contains an ellipsis (...), ISPF displays a pop-up window. When you
exit this panel or pop-up, ISPF closes the pull-down and returns you to the panel from which you made the initial
action bar selection.

ellipsis. Three dots that follow a pull-down choice. When you select a choice that contains an ellipsis, ISPF displays
a pop-up window.

pop-up window. A bordered temporary window that displays over another panel.

modal pop-up window. A type of window that requires you to interact with the panel in the pop-up before
continuing. This includes cancelling the window or supplying information requested.

modeless pop-up window. A type of window that allows you to interact with the dialog that produced the pop-up
before interacting with the pop-up itself.

point-and-shoot text. Text on a screen that is cursor-sensitive. See I'Paint-and-Shoat Text Fields” an page xxxii for

more information.

push button. A rectangle with text inside. Push buttons are used in windows for actions that occur immediately
when the push button is selected (available only when you are running in GUI mode).

function key. In previous releases of ISPF, a programmed function (PF) key. This is a change in terminology only.

select. In conjunction with point-and-shoot text fields and action bar choices, this means moving the cursor to a
field and simulating Enter.

mnemonics. Action bar choices can be defined with a underscored letter in the action bar choice text. In host mode
you can access the action bar choice with the ACTIONS command and parameter 'x’, where 'x” is the underscored
letter in the action bar choice text. In GUI mode you can use a hot key to access a choice on the action bar; that is,
you can press the ALT key in combination with the letter that is underscored in the action bar choice text.

© Copyright IBM Corp. 1980, 2001 XXvii

The ISPF User Interface

How to Navigate in ISPF without Using Action Bars

If you use a non-programmable terminal to access z/OS V1R2.0 ISPF and you do
not want to take advantage of the command nesting function, you can make
selections the same way you always have: by typing in a selection number and
pressing Enter.

How to Navigate in ISPF Using the Action Bar Interface

xxviii

Most ISPF panels have action bars at the top; the choices appear on the screen in
white by default. Many panels also have point-and-shoot text fields, which appear
in turquoise by default. The panel shown in [Eigure 3 on page xxd has both.

Action Bars

Action bars give you another way to move through ISPFE. If the cursor is located
somewhere on the panel, there are several ways to move it to the action bar:

* Use the cursor movement keys to manually place the cursor on an action bar
choice.

¢ Type ACTIONS on the command line and press Enter to move the cursor to the
first action bar choice.

* Press F10 (Actions) or the Home key to move the cursor to the first action bar
choice.
If mnemonics are defined for action bar choices, you can:
— In 3270 mode, on the command line, type ACTIONS and the mnemonic letter

that corresponds to an underscored letter in the action bar choice text. This
results in the display of the pull-down menu for that action bar choice.

— In 3270 mode, on the command line enter the mnemonic letter that
corresponds to an underscored letter in the action bar choice text, and press
the function key assigned to the ACTIONS command. This results in the
display of the pull-down menu for that action bar choice.

— In GUI mode, you can use a hot key to access a choice on an action bar or on
a pull-down menu; that is, you can press the ALT key in combination with
the mnemonic letter that is underscored in the choice text to activate the text.

Use the tab key to move the cursor among the action bar choices. If you are
running in GUI mode, use the right and left cursor keys.
Notes:

1. ISPF does not provide a mouse emulator program. This book uses select in
conjunction with point-and-shoot text fields and action bar choices to mean
moving the cursor to a field and simulating Enter.

Note: Some users program their mouse emulators as follows:

* Mouse button 1 — to position the cursor to the pointer and simulate
Enter

* Mouse button 2 - to simulate F12 (Cancel).

2. If you want the Home key to position the cursor at the first input field on an
ISPF panel, type SETTINGS on any command line and press Enter to display the
ISPF Settings panel. Deselect the Tab to action bar choices option.

3. If you are running in GUI mode, the Home key takes you to the beginning of
the current field.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

The ISPF User Interface

When %ou select one of the choices on the action bar, ISPF displays a pull-down

menu.

the ISPF Primary Option Menu action bar.

shows the pull-down menu displayed when you select Utilities on

=0 BE
Menu Utﬂitieanompﬂers Options Status Help
_ 1. Library ary Option Menu
2. Data set

0 Se 3. Move/Copy arameters User ID . : USERID
1 Vi 4. Data Set List or listings Time. . @ 15:08
2 Ed 5. Reset Statistics urce data Terminal. : 3278
3 Ut 6. Hardcopy ctions Screen. c 1
4 Fo 7. Download... e processing Language. : ENGLISH
5 Ba 8. Qutlist uage processing Appl ID . : ISR
6 Co 9. Commands... ation commands TSO Togon : SERPROC
7 Di *0. Reserved ing TSO prefix: USERID
8 LM 11. Format or functions System ID : VSIC
9 1IB 12. SuperC ment products MVS acct. : 76TDOB0Z
10 SC 13. SuperCE brary Manager Release . ISPF

11 Wo 14. Search-For Workplace

15. Search-ForkE

Enter defaults
Option ===>

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions Fl12=Cancel

The selected action bar choice is highlighted.

Figure 1. Panel with an Action Bar Pull-Down Menu

To select a choice from the Ultilities pull-down menu, type its number in the entry
field (underlined) and press Enter or select the choice. To cancel a pull-down menu

without making a selection, press F12 (Cancel).
9, ISPF displays the Command Table Utility pop-up, as shown in

For example, if

Eou select choice

Note: If you entered a command on the command line prior to selecting an action
bar choice, the command is processed, and the pull-down menu is never
displayed. The CANCEL, END, and RETURN commands are exceptions.
These three commands are not processed and the cursor is repositioned to
the first input field in the panel body. If there is no input field, the cursor is
repositioned under the action bar area. If you are running in GUI mode and
select an action bar choice, any existing command on the command line is

ignored.

The ISPF User Interface

XXix

The ISPF User Interface

=)
[j‘[} |D |E]
Menu Utilities Compilers Options Status Help
- Commands
Command Table Utility

0 Specifications Command search order

1 Application ID . . ISR Application table : ISR

2 Enter "/" to select option User table . :

3 __ Show description field Site table . :

4 System table . . ISP

5

6 If no application ID is specified, the current application ID will be
7 used. The name of the command table to be processed is formed by
8 prefixing the application id to the string '"CMDS'. For example:

9 | Application ID TST results in a command table name of 'TSTCMDS'.
1

1 Command ===

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward

E F9=Swap F12=Cancel
Option ===>

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions Fl2=Cancel

Figure 2. Pop-Up Selected from an Action Bar Pull-Down

\F10=Actions F12=Cancel

Menu Utitlities Compilers Options Status Help
ISPF Primary Option Menu
0 Settings Terminal and user parameters Dialog test
1 View Display Source data or listings Edit
2 Edit Create or changesource data Edit Recovery Table
3 Utilities Perform utility functions
4 Foreground Interactive language processing
5 Batch Submit job for language processing
6 Command Enter TSO or Workstation commands
7 Dialog Test Perform dialog testing
9 IBM Products IBM program development products
10 SCLM SW Configuration Library Manager
11 Workplace ISPF Object/Action Workplace
P PDF Tools PDF developement tools
0 SER Tools Local SER tools
Enter X to Terminate using log/list defaults
Option ===> _
F1=Help F2=8plit F3=Exit F7=Backward F8=Forward F9=Swap

/

2]
H

Figure 3. Panel with an Action Bar and Point-and-Shoot Fields

Action Bar Choices

Options. The fields in this column are point-and-shoot text fields.

The action bar choices available vary from panel to panel, as do the choices
available from their pull-downs. However, Menu and Utilities are basic action bar
choices, and the choices on their pull-down menus are always the same.

XXX z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

Action bar. You can select any of the action bar choices and display a pull-down.

Dynamic status area. You can specify what you want to be displayed in this area.

The ISPF User Interface

Menu Action Bar Choice
The following choices are available from the Menu pull-down:

Settings Displays the ISPF Settings panel

View Displays the View Entry panel

Edit Displays the Edit Entry panel

ISPF Command Shell Displays the ISPF Command Shell panel

Dialog Test... Displays the Dialog Test Primary Option panel

Other IBM Products... Displays the Additional IBM Program
Development Products panel

SCLM Displays the SCLM Main Menu

ISPF Workplace Displays the Workplace entry panel

Status Area... Displays the ISPF Status panel

Exit Exits ISPF.

Note: If a choice displays in blue (the default) with an asterisk as the first digit of
the selection number (if you are running in GUI mode, the choice will be

grayed), the choice is unavailable for one of the following reasons:

* Recursive entry is not permitted here

* The choice is the current state; for example, RefMode is currently set to

Retrieve in

=)
=l | o |EI
Menu Reflist RefMode Utilities LMF Workstation Help
1 1. List Execute ry Panel
*. List Retrieve
ISPF Library:
Project . . . USERID
Group PRIVATE
Type PANELS
Member . . . (BTank or pattern for member selection Tist)
Other Partitioned or Sequential Data Set:
Data Set Name . . .
Volume Serial . . . (If not cataloged)
Workstation File:
File Name
Initial Macro Options
Profile Name / Confirm Cancel/Move/Replace
Format Name Mixed Mode
Data Set Password . . Edit on Workstation
Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions Fl2=Cancel
Figure 4. An Unavailable Choice on a Pull-Down
Utilities Action Bar Choice
The following choices are available from the Utilities pull-down:
Library Displays the Library Utility panel
Data Set Displays the Data Set Utility panel
Move/Copy Displays the Move/Copy Utility panel
The ISPF User Interface XXXi

The ISPF User Interface

xxxii

Data Set List
Reset Statistics
Hardcopy
Download...

Outlist
Commands...
Reserved

Format
SuperC
SuperCE
Search-for
Search-forE

Displays the Data Set List Options panel
Displays the Reset ISPF Statistics panel

Displays the Hardcopy Utility panel

Displays the panel that enables you to download
workstation clients and other files from the host.
Displays the Outlist Utility panel

Displays the Command Table Utility panel
Reserved for future use by ISPF; an unavailable
choice

Displays the Format Specification panel
Displays the SuperC Utility panel

Displays the SuperCE Utility panel

Displays the Search-For Utility panel.

Displays the Search-ForE Utility panel.

Point-and-Shoot Text Fields

Point-and-shoot text fields are cursor-sensitive; if you select a field, the action
descrlbed in that field is performed. For example, if you select Option 0, Settings,

in Eigure 3 on page xxv, ISPF displays the ISPF Settings panel.

Note: If you have entered a command on the command line, this command is

processed before any point-and-shoot command unless you are running in
GUI mode.

The cursor-sensitive portion of a field often extends past the field name. Until you
are familiar with this new feature of ISPF, you might want to display these fields
in reverse video (use the PSCOLOR command to set Highlight to REVERSE).

Note: You can use the Tab key to position the cursor to point-and-shoot fields by
selecting the Tab to point-and-shoot fields option on the ISPF Settings panel
(Option 0).

Function Keys

ISPF uses CUA-compliant definitions for function keys F1-F12 (except inside the
Edit function). F13-F24 are the same as in ISPF Version 3. By default you see the
CUA definitions because your Primary range field is set to 1 (Lower - 1 to 12).

To use non-CUA-compliant keys, select the Tailor function key display choice
from the Function keys pull-down on the ISPF Settings (option 0) panel action bar.
On the Tailor Function Key Definition Display panel, specify 2 (Upper - 13 to 24)
in the Primary range field.

The following function keys help you navigate in ISPF:

F1 Help. Displays Help information. If you press F1 (and it is set to Help)
after ISPF displays a short message, a long message displays in a pop-up
window.

F2 Split. Divides the screen into two logical screens separated by a horizontal
line or changes the location of the horizontal line.
Note: If you are running in GUI mode, each logical screen displays in a
separate window.
F3 Exit (from a pull-down). Exits the panel underneath a pull-down.

F3 End. Ends the current function.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

F7
F8
F9

F10

F12

F16

The ISPF User Interface

Backward. Moves the screen up the scroll amount.
Forward. Moves the screen down the scroll amount.

Swap. Moves the cursor to where it was previously positioned on the
other logical screen of a split-screen pair.

Actions. Moves the cursor to the action bar. If you press F10 a second time,
the cursor moves to the command line.

Cancel. Issues the Cancel command. Use this command to remove a
pull-down menu if you do not want to make a selection. F12 also moves
the cursor from the action bar to the Option ==> field on the ISPF Primary
Option Menu. See ISPF Dialog Developer’s Guide and Reference for
cursor-positioning rules.

Return. Returns you to the ISPF Primary Option Menu or to the display
from which you entered a nested dialog. RETURN is an ISPF system
command.

Selection Fields
z/0S V1R2.0 ISPF uses the following CUA-compliant conventions for selection

fields:

A single period (.)

Member lists that use a single period in the selection field recognize only a
single selection. For example, within the Edit function you see this on your
screen:

EDIT USER1.PRIVATE.TEST ROW 00001 of 00002
Name VV MM Created Changed Size Init Mod 1ID

. MEM1 01.00 94/05/12 94/07/22 40 0 0 USERL
. MEM2 01.00 94/05/12 94/07/22 30 0 0 KEENE

You can select only one member to edit.

A single underscore ()

Selection fields marked by a single underscore prompt you to use a slash
(/) to select the choice. You may use any non-blank character. For example,
the Panel display CUA mode field on the ISPF Settings panel has a single
underscore for the selection field:
Options
Enter "/" to select option
Command Tine at bottom

Panel display CUA mode
Long message in pop-up

Note: If you are running in GUI mode, this type of selection field displays
as a check box; that is, a square box with associated text that
represents a choice. When you select a choice, a check mark (in
0S/2) or an X (in Windows) appears in the check box to indicate
that the choice is in effect. You can clear the check box by selecting
the choice again.

An underscored field (__)

Member lists or text fields that use underscores in the selection field
recognize multiple selections. For example, from the Display Data Set List
Option panel, you may select multiple members for print, rename, delete,
edit, browse, or view processing.

The ISPF User Interface XXXI1ii

The ISPF User Interface

Command Nesting

XXX1V

Command nesting allows you to suspend an activity while you perform a new one
rather than having to end a function to perform another function. For example, in
previous versions of ISPF, if you are editing a data set and want to allocate another
data set, you type =3.2 on the command line and press Enter. ISPF ends your edit
session before taking you to the Data Set Utility panel. When you have allocated
the data set and want to return to your edit session, you type =2 and press Enter;
ISPF returns you to the Edit Entry Panel. With z/OS V1R2.0 ISPF, from your edit
session, select the Data set choice from the Utilities pull-down on the Edit panel
action bar. ISPF suspends your edit session and displays the Data Set Utility panel.
When you have allocated the new data set and end the function, z/OS V1R2.0
ISPF returns you directly to your edit session rather than to the Edit Entry Panel.

z/0OS V1R2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 1. Introduction to ISPF

This chapter describes ISPF at an introductory level. It explains what ISPF is and
what it does for you.

What Is ISPF?

Consider the Interactive System Productivity Facility (ISPF) program product an
extension of the MVS Time Sharing Option (TSO) host system on which it runs.
ISPF services complement those of the host system to provide interactive
processing. ISPF is similar to a control program or access method in that it
provides services to dialogs (applications) during their execution. The types of
services provided by ISPF are:
* Display services
* File-tailoring services
* Variable services
* Table services
* Miscellaneous services
* Dialog test facility, including:

— Setting breakpoints

— Tracing usage of dialog services and dialog variables

— Browsing trace output in the ISPF log data set

— Examining and updating ISPF tables

— Interactively invoking most dialog services.

A dialog receives requests and data from a user at a terminal. The dialog responds
by using ISPF services to obtain information from, or enter information into, a
computer system.

What Is a Dialog?

To understand the dialog interface, you must first understand what a dialog is. A
dialog is the interaction between a person and a computer. It helps a person who is
using an interactive display terminal to exchange information with a computer.

The user starts an interactive application through an interface that the system
provides. The dialog with the user begins with the computer displaying a panel
and asking for user interaction. It ends when the task for which the interactions
were initiated is completed.

A dialog developer creates the parts of a dialog, called dialog elements. Each
dialog application is made up of a command procedure or program, together with
dialog elements that allow an orderly interaction between the computer and the
application user.

The elements that make up a dialog application are:
* Functions

* Variables

¢ Command tables

* Panel definitions

* Message definitions

* File-tailoring skeletons

* Tables.

© Copyright IBM Corp. 1980, 2001 1

2

A dialog does not necessarily include all types of elements, particularly tables and
skeletons, which certain kinds of applications do not use.

Functions

A function is a command procedure or a program that performs processing
requested by the user. It can invoke ISPF dialog services to display panels and
messages, build and maintain tables, generate output data sets, and control
operational modes.

A function can be coded in a command procedure language using CLIST or REXX
or in a programming language, such as PL/I, COBOL, FORTRAN, APL2, Pascal, or
C.

You can use more than one language in a dialog application. For example, within a
single application containing three functions, each function could be written using
a different language, such as PL/I, COBOL, or FORTRAN. One or more of the
functions can be written using a command procedure language instead of a
programming language.

A function coded in a programming language can be designed for cross-system
use, to be processed by equivalent levels of ISPF running under Virtual Memory
(VM) or MVS.

Notes:
1. ISPF functions written in PL/I should not be linked with the PL/I multitasking
libraries.

2. ISPF functions written in FORTRAN should be linked in FORTRAN link mode.
That is, include the VLNKMLIB library ahead of the VFORTLIB library in the
SYSLIB concatenation. Refer to the VS FORTRAN Programming Guide for
additional information.

3. ISPF functions written in the C language should be linked with the C$START
load module. For more information, refer to the C Compiler User’s Guide

Variables

ISPF services use variables to communicate information among the various
elements of a dialog application. ISPF provides a group of services for variable
management. Variables can vary in length from zero to 32K bytes and are stored in
variable pools according to how they are to be used. A set of variables whose
names begin with the character Z are system variables. Z variables are reserved for
ISPF system-related uses.

Command Tables

A system command table (ISPCMDS) is distributed with ISPF in the table input
library. An application can provide an application command table by including a
table named xxxxCMDS in its table input library, where xxxx is a 1- to 4-character
application ID. In addition, you can specify two other command tables, the User
command table and the Site command table. The application IDs of both are
specified in the ISPF Configuration table. You can also specify if the Site command
table is searched before or after the system command table.

You can define an application command table either by using the Dialog Tag
Language (DTL) and ISPF conversion utility, or by using ISPF option 3.9.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

When a user enters a command, the dialog manager searches the application
command table, if any, and then the system command table. If it finds the
command, action is taken immediately. If it does not find the command in the
application or system tables, the command is passed to the dialog, unaltered, in
the command field. The dialog then takes appropriate action.

Note: You can use the TSO ISPCMDTB command to convert existing command
tables to DTL. To use ISPCMDTB, ensure the command table is in your table
concatenation (ISPTLIB), then type TSO ISPCMDTB applid (where applid is
the application id of the command table). This will begin an edit session
containing the DTL version of the command table. Use the editor CREATE
or REPLACE command to save the table to your DTL source data set.

Panel Definitions

A panel definition is a programmed description of the panel. It defines both the
content and format of a panel.

Most panels prompt the user for input. The user’s response can identify which
path is to be taken through the dialog, as on a selection panel. The response can be
interpreted as data, as on a data-entry panel.

Message Definitions

Message definitions specify the format and text of messages to users. A message
can confirm that a user-requested action is in progress or completed, or it can
report an error in the user’s input. Messages can be superimposed on the display
to which they apply, directed to a hardcopy log, or both.

File-tailoring Skeletons

A file-tailoring skeleton, or simply a skeleton, is a generalized representation of
sequential data. It can be customized during dialog execution to produce an output
data set. After a skeleton is processed, the output data set can be used to drive
other processes. File skeletons are frequently used to produce job data sets for
batch execution.

Tables

Tables are two-dimensional arrays that contain data and are created by dialog
processing. They can be created as a temporary data repository, or they can be
retained across sessions. A retained table can also be shared among several
applications. The type and amount of data stored in a table depends on the nature
of the application.

Tables are generated and updated during dialog execution. The organization of
each table is specified to ISPF using ISPF table services.

What Does a Dialog Do?

You can use ISPF to simplify the programming that provides interactive
application operations. Operations performed during dialog execution include:

* Identifying to the user choices of available processing routines

* Invoking a requested routine, based on the user’s choice

* Prompting the user to enter data

* Reading the data into a work area

* Checking the data to verify that it is appropriate for the application

Chapter 1. Introduction to ISPF 3

If the data is not appropriate for the application:
— Identifying the error to the user
— Prompting the user to enter new data and verifying that data

If the entered data is in the proper form:

— Displaying any information requested by the user

— Processing or storing the user’s data, then advising the user of its disposition
* Creating sequential output data sets or reports

* Providing online messages, help, and tutorial displays to help users understand
application processing.

Developing a Dialog

4

A developer, using an editor such as the PDF editor in Option 2 of ISPE, develops
a dialog by creating its various elements at a terminal and storing them in
libraries. You can use any available editor when creating dialog elements.

However, in addition to an editor, ISPF provides special facilities to aid dialog
development. Examples of these facilities are:

* A VIEW facility for displaying source data or output listings

* Utilities to simplify data handling

* Programming-language processing facilities

* Edit models for messages, file-tailoring skeletons, panels, and DTL source

* Library access services for accessing both ISPF libraries and other data sets.

Eigure 5 on page § shows a developer using ISPF to create and test dialog

elements. As shown in the figure, panel definitions, message definitions, and
file-tailoring skeletons are created prior to running the dialog. These dialog
elements are saved in libraries. The developer stores the program (after
compilation) or command procedure in an appropriate system program library.
During dialog testing, tables of data, log entries, and file-tailoring output data sets
can be created by dialog processing. ISPF creates the log data set the first time the
user performs some action that results in a log message, such as saving edited data
or submitting a job to the batch machine. ISPF creates the list data set the first time
a user requests a print function or executes a dialog that issues a LIST service
request.

When the developer completes the functions, panel definitions, and any other
dialog elements required by the application being developed, the dialog is ready to
be processed under ISPFE.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

4 MVS N\ 4 ISPF Libraries ™\

N
1sPF S—T —
Panel Message
Library Library
L/ v
N [y S
e
PDF File
<}:—'\ Table Tailoring
v Library Skeleton
L’/ Library
Y
Q >
*Log and File
> L%st Tailoring
Library Output
Library
Dialog Developer _)
: Operating System
Program or
(:::) Command
Procedure
_ J L/ Data Set

*In addition to being an output data set, the log data set can be browsed
and is an input data set when Dialog Test option 7.5 is in effect.

Figure 5. Using ISPF

How Dialog Elements Interact

A dialog can be organized in a variety of ways to suit the requirements of the
application and the needs of the application user.

A typical dialog organization, shown in [Eigure 6 on page d, starts with display of
the highest menu, called the primary option menu. User options selected from the

primary option menu can result in the call of a function or the display of a
lower-level menu. Each lower-level menu can also cause functions to receive
control or still other menus to be displayed.

Eventually, a function receives control. The function can use any of the dialog
services provided by ISPE. Typically, the function can continue the interaction with
the user by means of the DISPLAY service. The function might also display
data-entry panels to prompt the user for information. When the function ends, the
menu from which it was invoked is redisplayed.

Chapter 1. Introduction to ISPF 5

Primary
Option Menu

~~—

v SN BN

Dialog Lower-Level Lower-Level
Function Menu Menu

~— ~—

RE vy

Dialog
Function

Data-Entry

Figure 6. Typical Dialog Organization Starting with a Menu

Eigure 7 on page 7 shows another type of dialog organization in which a dialog

function receives control first, prior to the display of a menu. The function
performs application-dependent initialization and displays data-entry panels to
prompt the user for basic information. It then starts the selection process by using
the SELECT service to display the primary option menu for the application.

As shown in Eigure 7 on page 7, a function can also invoke another function
without displaying a menu. It uses the SELECT service to do this, which provides
a convenient way to pass control from a program-coded function to a
command-coded function, or vice versa. The invoked function then starts a
lower-level menu process, again by using the SELECT service.

6 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

START

Dialog
Function
Data-Entry

Panels

¢

L

Menu

: v

H

Menu Menu Dialqg
Function
2% K
Dialog -l Dialog
Function o Function Menu

AR

Figure 7. Typical Dialog Starting with a Function

To relate your application design to CUA design models and principles, refer to the
IBM Common User Access Guidelines It is recommended you use DTL to design
CUA-based panels. Refer to the ISPF Dialog Tag Language Guide for more
information.

Dialog Variables

ISPF uses dialog variables to communicate data between the dialog management
services and the dialog elements. A dialog variable’s value is a character string that
can vary in length from 0 to 32K bytes. Some services restrict the length of dialog
variable data.

Dialog variables are referred to symbolically. The name is composed of 1-8
characters (6 for FORTRAN). Alphanumeric characters A-Z, 0-9, #, $, or @ can be
used in the name, but the first character cannot be numeric. APL variable names
cannot contain #, $, or @.

Dialog variables can be used with panels, messages, and skeleton definitions, as
well as within dialog functions. For example, a dialog variable name can be
defined in a panel definition, and then referred to in a function of the same dialog.
Or, the variable can be defined in a function, then used in a panel definition to
initialize information on a display panel, then later used to store data entered by
the user on the display panel.

For functions coded in a programming language other than APL2, the internal
program variables that are to be used as dialog variables can be identified to ISPF
and accessed using the ISPF variable services. The use of STEM or COMPOUND
variables within a REXX procedure is not supported by ISPF. For a function coded

Chapter 1. Introduction to ISPF 7

as CLIST or REXX command procedures or as an APL2 procedure, variables used
in the procedure are automatically treated as dialog variables. In this case, no
special action is required to define them to ISPE.

8 2z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 2. Controlling ISPF Sessions

This chapter is intended to help you understand how to control ISPF sessions. It
describes how to start and stop an ISPF session and how to use many of the ISPF

facilities.

Dialog Control and Data Flow

Dialog control and data flow are illustrated in w At the start of an ISPF
session, you can use the ISPSTART command to either request a selection panel
from which to choose the first task or call a dialog function. The figure also
illustrates how the ISPF services interact with the various dialog elements.

ISPSTART
Command

|
i
|
v

ISPF
Initialization

|
|
|
v

Select
Services
T
|

v

Dialog
Function

_______ — Control Flow
— > Data Flow

Figure 8. Control and Data Flow

Dialog Manager

)

Panel

Display
Services

Y

Library

-

Message
Library

-

Skeleton

File
Tailoring
Services

Library

)

Output

Variable

Y

Data Sets
N—_

-

Services

Table

Profile
Pool

)

Services

Data

Tables

Processing a Dialog

shows a dialog being processed under ISPFE. The figure shows
that ISPF dialog services are available only to command procedures or programs
running under ISPF. During dialog processing, the dialog requests specific ISPF
services and identifies the panel and message definitions, skeletons, and tables to
use. The figure also shows that entries in the log and list data sets, as well as the
file-tailoring output data sets, can be generated during dialog processing.

© Copyright IBM Corp. 1980, 2001

4 MVS) /" ISPF Libraries

Y Y
N N
ISPF
<:: Panel Message
<D Y
N N
N File
I Lo
App!lcatlon ¢—|] Table Tailoring
Dialog .
Library Skeleton
Y Y
N N
File
> Lol?i and Tailoring
st
. f Librar Output
Application User J M
Operating System
Program or
Command
Procedure
_ Y, Data Sets

Figure 9. Application Dialog Running under ISPF

Dialog processing begins either with the display of a selection panel or with a
function. In either case, you can invoke a dialog from a terminal running under
control of TSO.

Starting a Dialog

10

You can use the ISPF, PDF, or ISPSTART command, with the CMD, PGM, or
PANEL keyword, to invoke ISPF or other dialogs. These commands provide
compatibility with the SPF licensed program. ISPF is a command procedure that
runs under TSO. For example, it can be invoked by a:

¢ Terminal running under TSO
e Command procedure (CLIST or REXX).

Before starting a dialog, data sets referred to by the dialog must be defined to ISPF.

Syntax for Issuing the ISPSTART Command

You invoke ISPF by using the ISPSTART command. ISPSTART command
parameters specify the first menu to be displayed or the first function to receive
control prior to the display of a menu.

If no parameters are specified, the ISPSTART command defaults to
PANEL(ISP@MSTR). If the PDF or ISPF command is used to start the product, the
default is PANEL(ISP@PRIM) NEWAPPL(ISR). All the parameters below apply to
the PDF and ISPF command as well as ISPSTART. For more information about the
GUI parameters, refer to the ISPF User’s Guide Volume II.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

ISPSTART

{PANEL (panel-name) [OPT(option)] [ADDPOP]}
{CMD(command parml parm2) [LANG(APL|CREX)]}
{PGM(program-name) [PARM(parameters)]}
{WSCMD (workstation-command)

[MODAL |MODELESS]

[WSDIR(dir)]

[MAX |MIN]

[VIS|INVIS]}

{WSCMDV (var_name)

[MODAL |MODELESS]

[WSDIR(dir)]

[MAX |MIN]

[VIS|INVIS] }
[GUI(LU:address:tpname | IP:address:port |,FI:) |,NOGUIDSP)] [TITLE(title)]
[GUISCRW(screen-width)]
[GUISCRD(screen-depth)]

[FRAME (STD|FIX|DLG)]

[CODEPAGE (codepage)] [CHARSET (character set)]
[BKGRND (STD|DLG)]

[NEWAPPL[(appTication-id)]1]

[SCRNAME (screen-name)]
[TEST|TESTX| TRACE | TRACEX]
[NOLOGO| LOGO (Logo-panel-name)]
[BATSCRW(screen-width)]

[BATSCRD (screen-depth)]

[BDISPMAX (max-number-of-displays)]

[BREDIMAX (max-number-of-redisplays)]

[BDBCS]

[DANISH|ENGLISH | GERMAN | JAPANESE |

PORTUGUE SPANISH|KOREAN|FRENCH|ITALIAN|CHINESET|
CHINESES | SGERMAN | UPPERENG]

where:

panel-name
Specifies the name of the first menu (that is, the primary option menu) to be
displayed.

option
Specifies an initial option, which should be a valid option on the first menu.
This causes direct entry to that option without displaying the primary option
menu. (The primary option menu is processed in nondisplay mode, as though
the user had entered the option.) If you specify an option that is not valid, the
primary option menu displays an appropriate error message.

ADDPOP
Specifies that the panel displayed from a SELECT service appears in a pop-up
window. An explicit REMPOP is performed when the SELECT PANEL has
ended.

command
Specifies a command procedure (CLIST or REXX), an APL2 command, or a
TSO command processor that is to be invoked as the first dialog function. For
more information on invoking APL2 dialogs, see ISPF Services Guide

CLIST or REXX command parameters can be included within the parentheses.
For example, the call format would be:

ISPSTART CMD(MYCLIST parml parm2 ...)

Chapter 2. Controlling ISPF Sessions 11

12

These parameters are passed to the command procedure. You can find
information about specifying CLIST parameters in TSO/E Version 2 CLISTs and
information about specifying REXX parameters in TSO/E Version 2 REXX User’s
Guide

You can type a percent sign (%) preceding the CLIST or REXX procedure name
to:

* Improve performance

¢ Prevent ISPF from entering line-display mode when the procedure is started.

Note: When starting a CLIST or REXX procedure or a program through the
SELECT service, a MODE(LINE | FSCR) parameter is available for
specifying either line- or full-screen mode. If you do not specify the
mode parameter or do not use the % prefix, ISPF enters line-display
mode.

* Ensure that the command procedure is invoked if ISPF has access to a
program function that has the same name as the procedure. If you use the
percent sign prefix, ISPF searches only for a procedure with the specified
name. However, without the percent sign prefix, ISPF searches first for a
program, then for a CLIST or REXX procedure.

On extended data stream terminals, using the percent sign causes the keyboard
to remain in a locked condition. To avoid this condition, the CLIST or REXX
procedure can issue output line I/O before issuing a READ.

LANG(APL | CREX)

Specifies special language invocations. LANG(APL) specifies to start the
command specified by the CMD keyword, and to start an APL2 environment.
LANG(CREX) specifies that the command specified by the CMD keyword is a
REXX EXEC that has been compiled and link-edited into a LOAD module and
that a CLIST/REXX function pool is to be used.

program-name

Specifies the name of a program that is to be invoked as the first dialog
function. In PL/I, it must be a MAIN procedure. This parameter must specify
the name of a load module that is accessible by use of the LINK macro.

However, if the program dialog consists of multiple tasks and if any of the
subtasks use ISPF services, the CMD keyword, not the PGM keyword, must be
used. Dialog developers should avoid using prefixes ISP and ISR, the ISPF
component codes, in naming dialog functions. Special linkage conventions,
intended only for internal ISPF use, are used to invoke programs named
ISPxxxxx and ISRXxxxx.

parameters

Specifies input parameters to be passed to the program. The program should
not attempt to modify these parameters.

The parameters within the parentheses are passed as a single character string,
preceded by a half-word containing the length of the character string, in
binary. (The length value does not include itself.) This convention is the same
as that for passing parameters by use of the PARM= keyword on a JCL EXEC
statement.

Parameters on the ISPSTART command to be passed to a PL/I program are
coded in the standard way:

XXX: PROC (PARM) OPTIONS(MAIN);
DCL PARM CHAR (nnn) VAR;

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

If the value of the PARM field is to be used as an ISPF dialog variable, it must
be assigned to a fixed character string because the VDEFINE service cannot
handle varying length PL/I strings. In PL/I, the first character of the PARM
field must be a slash (/) since PL/I assumes that any value prior to the slash is
a run-time option.

workstation-command
Specifies a fully-qualified workstation program with any of its parameters. To
issue a command that is not a program (.exe, .com, .bat, or .cmd file in OS/2)
the DOS and OS/2 environments allow the command to be prefaced with the
DOS COMMAND command or the OS/2 CMD command. For example, in the
DOS environment: SELECT WSCMD(COMMAND /C DIR C:), or in the OS/2
environment: SELECT WSCMD(CMD /C DIR C:).

MODAL
The MODAL parameter invokes the workstation command modally. It waits
until the workstation command has completed and then returns to ISPF.

MODELESS
The MODELESS parameter invokes the command modelessly and is only valid
when running in GUI mode. It is the default. It does not wait until the
workstation command has completed. It always returns a return code of zero if
the command was started, even if the command does not exist at the
workstation.

WSDIR(dir)
The WSDIR parameter specifies the variable name containing the workstation
current working directory. This directory is the directory from which the
workstation command should be invoked.

MAX
The MAX parameter attempts to start the workstation command in a
maximized window. The workstation command may override this request.
MAX and MIN are mutually exclusive.

MIN
The MIN parameter attempts to start the workstation command in a
minimized window. The workstation command may override this request.
MAX and MIN are mutually exclusive.

VIS
The VIS parameter attempts to start the workstation command as a visible
window. The workstation command may override this request. This is the
default. VIS and INVIS are mutually exclusive.

INVIS
The INVIS parameter attempts to start the workstation command in an
invisible (hidden) window. The workstation command may override this
request. VIS and INVIS are mutually exclusive.

var_name
Specifies a variable name that contains the text string of a command and its
parameters. Use this when the command path or parameters, or both, contain
any of the following: imbedded blanks, quotation marks, or special characters
that might not parse properly with the WSCMD service.

LU:address:tpname
Specifies the workstation’s Advanced Program-to-Program Communication
(APPC) network name.

Chapter 2. Controlling ISPF Sessions 13

Note: The variable ZGUI will be set to the workstation address (in character
format) if ISPSTART is issued with the GUI parameter; ZGUI will be set
to blank if ISPSTART is issued without the GUI parameter.

IP:address:port
Specifies the workstation’s Transmission Control Protocol/Internet Protocol
(TCP/IP) hardware-level IP address: a fully qualified machine name.

Note: The variable ZGUI will be set to the workstation address (in character
format) if ISPSTART is issued with the GUI parameter; ZGUI will be set
to blank if ISPSTART is issued without the GUI parameter.

FI: Specifies that you want to search a file allocated to DD ISPDTPREF for the
user’s network protocol and workstation address to be used when initiating a
workstation connection or GUI display. Refer to the ISPF User’s Guide for more
information.

NOGUIDSP
Specifies that you want to make a connection to the workstation, but DO NOT
want ISPF to display in GUI mode.

Note: This parameter is only valid if you have specified an LU, IP, or
FIparameter. In other words, you can have any of the following
situations:

* you specify LU:address:tpname, IP:address:port, or FI: without the
NOGUIDSP parameter

* or you specify LU:address:tpname, NOGUIDSP

* or you specify IP:address:port, NOGUIDSP

* or you specify FI:;, NOGUIDSP

TITLE(title)
Specifies the text displayed in the title bar unless a dialog has assigned a
non-blank value to ZWINTTL or ZAPPTTL. The default value for the title bar
is the user ID. This value has a maximum length of 255 characters and will be
truncated without notice to the user at display time if it does not fit on the
panel.

GUISCRW ((screen-width)
Allows you to specify a screen width different than that of the emulator or real
device from which you enter the ISPSTART command. If you do not specify
GUISCRD, the depth will be that of the emulator or real device.

If GUISCRW is different than the emulator or real device, and GUI
initialization fails, ISPF will not initialize. Dialogs started with dimensions
other than those of the emulator or real device that use the GRINIT service
will not display GDDM* screens.

Note: This parameter is usually only used with the GUI parameter, but you
can specify it without using the GUI parameter. When you do this and
use a valid value for this parameter, ISPF does nothing with the value.
However, if you specify a value that is not valid for this parameter, ISPF
might return an error condition.

GUISCRD(screen-depth)
Allows you to specify a screen depth different than that of the emulator or real
device from which you enter the ISPSTART command. If you do not specify
GUISCRW, the width will be that of the emulator or real device.

14 2/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

If GUISCRD is different than the emulator or real device and GUI initialization
fails, ISPF will not initialize. Dialogs started with dimensions other than those
of the emulator or real device that use the GRINIT service will not display
GDDM screens.

Note: This parameter is usually only used with the GUI parameter, but you
can specify it without using the GUI parameter. When you do this and
use a valid value for this parameter, ISPF does nothing with the value.
However, if you specify a value that is not valid for this parameter, ISPF
might return an error condition.

CODEPAGE(codepage) CHARSET (character_set)

When running in GUI mode or connecting to the workstation, these values are
used as the host codepage and character set in translating data from the host
to the workstation, regardless of the values returned from the terminal query
response.

When running in 3270 mode, if your terminal or emulator does not support
codepages, these values are used as the host codepage and character set.
Otherwise, these values are ignored.

FRAME(STD | FIX| DLG)
Specifies that the first window frame displayed will be a standard (STD), fixed
(FIX), or dialog (DLG) window frame, where:

Standard
A GUI window frame that can be resized and has max/min buttons.
This is the default value.

Fixed A GUI window frame that has max/min buttons but cannot be resized.

Dialog
A GUI window frame that cannot be resized and does not have
max/min buttons.

Note: Pop-up panels are displayed in dialog frames by default.

Note: This parameter is usually only used with the GUI parameter, but you
can specify it without using the GUI parameter. When you do this and
use a valid value for this parameter, ISPF does nothing with the value.
However, if you specify a value that is not valid for this parameter, ISPF
might return an error condition.

BKGRND(STD I DLG)
Specifies that the first window frame displayed will be a standard (STD) or
dialog (DLG) background color. The colors are defined by the workstation. In
0S/2 2.1, the colors are white for STD and gray for DLG. The default is DLG.

Note: This parameter is usually only used with the GUI parameter, but you
can specify it without using the GUI parameter. When you do this and
use a valid value for this parameter, ISPF does nothing with the value.
However, if you specify a value that is not valid for this parameter, ISPF
might return an error condition.

NEWAPPL(application-id)
Specifies a 1- to 4-character code that identifies the application that is being
invoked. The code is to be prefixed to the user and edit profile names or to the
command table associated with the application, as follows:

Chapter 2. Controlling ISPF Sessions 15

16

User Profile - xxxxPROF
Edit Profile - xxxxEDIT
Command Table - xxxxCMDS

where xxxx is the application-id. If the application-id is omitted, or if the
NEWAPPL keyword is omitted, the application-id defaults to ISP.

SCRNAME(screen-name)
Specifies a screen name to be used with the SWAP command and the ISPF task
list. The name can be any set of 2 to 8 characters, except LIST, PREV, or NEXT.

TEST
Specifies that ISPF is to be operated in TEST mode, described under I'ISPE Test

”

TESTX

Specifies that ISPF is to be operated in extended TEST mode, described under
'ISPE Test and Trace Maodes” on page 24

TRACE
Specifies that ISPF is to be operated in TRACE mode, described under
TRACEX

Specifies that ISPF is to be operated in extended TRACE mode, described
under 'ISPE Trace Mades” on page o5

LOGO(logo-panel-name)
Specifies that ISPF displays the named panel prior to invoking the specified
dialog object. Subsequent SELECT service requests that identify a LOGO panel
will not result in the indicated panel being displayed. This includes a repeat of
the first SELECT as a result of a split-screen request or a logical screen restart
following a severe dialog error.

Applications can choose to display their own LOGO panel directly. These
applications can determine whether the user specified the NOLOGO keyword
on ISPSTART by retrieving the ISPF system variable ZLOGO. Applications that
choose to display their own LOGO panel are responsible for controlling that
display operation during split-screen operations and logical-screen restart
situations.

NOLOGO
Specifies that ISPF is to bypass the display of the message pop-up window
containing the product title and copyright statement.

screen-width
For batch mode, specifies screen width in character positions. The default value
is 80. This parameter is ignored when not running in batch mode.

All screen sizes from 24 x 80 to 62 x 160 are valid.

screen-depth
For batch mode, specifies screen depth in lines. The default value is 32. This
parameter is ignored when not running in batch mode.

max-number-of-displays
For batch mode, specifies the maximum number of displays that can occur
during a session. This number includes the total of all SELECT PANEL calls,
plus all DISPLAY and TBDISPL calls (with or without panel name). This
number does not include redisplays related to the .MSG control variable. The
largest number that can be specified is 999999999. The batch default value is
100. This parameter is ignored when not running in batch mode.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

max-number-of-redisplays
For batch mode, specifies the maximum number of redisplays allowed for a
.MSG-redisplay loop. The largest number that can be specified is 255. The
batch default value is 2. This parameter is ignored when not running in batch
mode.

BDBCS
For batch mode, specifies that Double-Byte Character Set (DBCS) terminal
support is required. This parameter is ignored when not running in batch
mode.

DANISH, ENGLISH, GERMAN, JAPANESE, PORTUGUE, SPANISH, KOREAN,

FRENCH, ITALIAN, CHINESET, CHINESES, SGERMAN, UPPERENG
Specifies the national language that is to override the default language for this
session. The JAPANESE keyword specifies that the KANJI character set is to be
used. The CHINESET keyword stands for Traditional Chinese, CHINESES
stands for Simplified Chinese, and SGERMAN stands for Swiss-German. The
UPPERENG keyword specifies that the uppercase English character set is to be
used. For information about establishing the default session language, refer to
the ISPF Planning and Customizing manual.

Notes:

1. Attempting to run a dialog under a session language other than that for
which it was intended may produce unexpected results.

2. When the Korean, French, Italian, Traditional Chinese, Simplified Chinese,
Spanish, Brazilian-Portuguese, or Danish session language is specified, its
respective literal module is used. However, the ISPF product panels and
messages are displayed in English.

3. If you specify the CMD (command) or PANEL (panel) keyword more than
once on an ISPSTART command line, ISPF uses the last value specified. For
example, If you specify:

ISPSTART PANEL(PANELA) PANEL (PANELX)

ISPF interprets the command as:
ISPSTART PANEL (PANELX)

Using the ISPSTART Command

ISPSTART command parameters specify the first menu to be displayed or the first
function to receive control. For example:

ISPSTART PANEL (ABC)

invokes ISPF and specifies that dialog processing is to begin with display of a
selection panel named ABC. Panel ABC is stored in the panel library.

Another example:
ISPSTART CMD(%DEF)

invokes ISPF and specifies that dialog processing is to begin with a CLIST
command procedure function named DEF.

The following example:
ISPSTART PGM(GHI)

invokes ISPF and specifies that dialog processing is to begin with a program
function named GHL

Chapter 2. Controlling ISPF Sessions 17

18

The ISPSTART command is typically entered during logon or from a command
procedure. For example, suppose you begin an application from a terminal by
invoking a command procedure named ABC. Procedure ABC allocates the
appropriate libraries for the application, and then issues an ISPSTART command to
begin ISPF processing. The ABC procedure cannot use ISPF dialog services,
because it does not run under ISPF.

ISPF is a command processor that can be attached by another command processor
as a subtask. You should always specify SZERO=NO in the MVS ATTACH macro,
as ISPF does when it attaches a subtask, to assure that at ISPF termination the
storage that was acquired by ISPF will be released. For more information on using
MVS macros, refer to MVS/XA Supervisor Services and Macros

Invoking a Dialog from a Selection Panel

shows a selection panel on which the user has selected option 3. When
the user presses Enter, option 3, the INVENTORY application, is given control.

=)
1] EE
——————————————————————————————— BUILDING 661 —-———-—---—-—-—-——-———————————————
SELECT OPTION ===> 3_
1 PAYROLL - Add, update, or delete employee records
2 MAILING - Add, delete, or change address of employee
3 INVENTORY - Status of stock
4 SCHEDULE - Building maintenance

ENTER END COMMAND TO TERMINATE.

Figure 10. Sample Selection Panel

Invoking a Dialog from a Master Application Menu

If your installation provides an ISPF master application menu, you can invoke a
dialog from that menu. A master application menu is one from which any of the
installation’s applications can be invoked. It generally is displayed at the beginning
of each ISPF session. Figure 11 on page 19 is an illustration of the sample master
application menu shipped with ISPFE.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

=] EE

ISPF Master Application Menu

Sample 1 Sample application 1 Userid . : USERID
. (Description for option 2 Time . . : 13:41
(Description for option 3 Terminal : 3278
(Description for option 4 PF keys : 12
. (Description for option 5 Screen . : 1
Exit Terminate ISPF using Tist/log defaults Language : ENGLISH
Appl ID : ISR
Release : ISPF

OIS WM

Enter END command to terminate application

5655-042 (C) Copyright IBM CORP 1982, 1996

Licensed Materials - Property of IBM 5645-001, 5655-042 (C) Copyright IBM
Corp. 1980, 1996. All rights reserved. US Government Users Restricted Rights
- Use, dup]wcat1on or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Option ===>
Fl=Help F2=Split F3=Exit F9=Swap F10=Actions Fl2=Cancel

Figure 11. ISPF Master Application Menu (ISP@MSTR)

You usually invoke the master menu by using the ISPSTART command with no
operands. ISPSTART can be issued automatically as part of a user’s logon
procedure or from a CLIST or REXX command procedure.

What the SELECT Service Does

The SELECT service initiates dialog execution. Selection keywords, passed to the
SELECT service, specify whether the dialog begins with the display of a menu
(PANEL keyword) or the execution of a dialog function (CMD or PGM keyword).
The dialog terminates when the selected menu or function terminates. The action
at termination depends on how the SELECT service was originally invoked.

SELECT is both a control facility and a dialog service. ISPF uses SELECT during its
initialization to invoke the function or selection panel that begins a dialog. During
dialog processing, SELECT displays selection panels and invokes program
functions or command procedure functions.

The principal SELECT parameters are:
PANEL(panel-name)
CMD(command)
PGM(program-name)

See ISPF Services Guide for a full description of the SELECT service syntax.

The panel-name parameter specifies the name of the next selection panel to be
displayed. You must use the ISPF panel definition statements (described in

IChapter 5 Panel Definition Statement Guide” on page 99) to define the panel.

The command and program-name parameters specify a function, coded as a CLIST
command procedure or program, respectively, to receive control. Input parameters
can be passed to the function as part of the command specification or, for
programs, by the use of the PARM parameter.

Chapter 2. Controlling ISPF Sessions 19

Figure 14 shows how the SELECT service is used when invoking or processing a
dialog. After SELECT starts a dialog, the dialog uses it as a service to invoke a
function or to display a selection panel. In turn, that function or menu can use
SELECT to invoke another function or to display another menu. This function or
menu can, in turn, using SELECT, invoke still another function or menu. This
process can continue for many levels and establishes a hierarchy of invoked
functions and menus. There is no restriction on the number of levels allowed in
this hierarchy.

Subtasks attached by the SELECT service do not share subpools. ISPF specifies
SZERO=NO when issuing the ATTACH macro to assure that at SELECT
termination the storage that was acquired by ISPF is released.

| SPSTART

Begin

| SPF

SELECT Display Menu

Service < >
Select Lower -
Level Menu Invoke DISPLAY

Display

Select Lower - Y Data-Entry
Level Menu or TBDISPL
or Function Dialog Panell

Function [<

Figure 12. SELECT Service Used to Invoke and Process a Dialog

When a lower-level function or menu in the hierarchy completes its processing,
control returns to the higher-level function or menu from which it was invoked.
The higher-level function resumes its processing, or the higher-level menu is
redisplayed for the user to make another selection. Thus, SELECT is used in a
dialog to establish a hierarchy of functions and menus. This hierarchy determines
the sequence in which functions and menus are processed, including the sequence
in which they are terminated.

20 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Dialog functions written as command procedures can directly invoke other
functions written as command procedures without using the SELECT service. They
are not treated as new functions by ISPE.

Dialog functions written as programs can invoke another function only through
using the SELECT service. Thus, when a program-coded function calls another
program directly, without using the SELECT service, the called program is treated
as part of the function that called it. It is not treated as a new function by ISPFE.

Invoking the SELECT Service

The SELECT service can be invoked in the following ways:

During initialization, the dialog manager automatically invokes the SELECT
service to start the first dialog. The selection keywords originally specified on
the ISPSTART command are passed to the SELECT service.

For dialogs invoked by ISPSTART, ISPF error processing is not put into effect
until ISPF is fully initialized. ISPF is considered to be fully initialized when the
Enter key on the primary option menu has been processed without a severe
error occurring.

If you enter split-screen mode, the dialog manager again invokes the SELECT
service and again passes the selection keywords from the ISPSTART command.
This causes the first dialog, specified in the ISPSTART command, to be initiated
on the new logical screen.

The SELECT service recursively invokes itself when you select an option from a
menu displayed by the SELECT service. In this case, the selection keywords are
specified in the panel definition for the menu.

The SELECT service can be invoked from a dialog function. In this case, the
selection keywords are passed as calling sequence parameters.

Terminating a Dialog

The action taken at dialog termination is as follows:

If a dialog function invoked the SELECT service, control returns to that function
and the function continues execution.

If a menu invoked the SELECT service, that menu is redisplayed, including
execution of the INIT section in the panel definition.

If you are terminating split-screen mode, the original dialog ends on that logical
screen, and the other logical screen expands to the full size of the viewing area.
If you are terminating ISPF, which can be done only in single-screen mode,
either the ISPF termination panel is displayed or the ISPF SETTINGS defaults for
list/log processing are used.

ISPF displays the termination panel if:

The dialog started with the display of a menu and you entered the END
command on that menu.

The dialog started with the execution of a function, and the function ended with
a return code of 0.

The list/log defaults are used if:

The dialog started with the display of a menu and you entered the RETURN
command or selected the EXIT option.

The dialog started with the execution of a function and the function ended with
a return code of 4 or higher. A return code other than 0 or 4 causes an error
message to be displayed.

Chapter 2. Controlling ISPF Sessions 21

22

If you have not specified valid list/log defaults, the ISPF termination panel is
displayed in all cases.

Return Codes from Terminating Dialogs

The return code from ISPSTART for a successful dialog completion is either 0 or a
value returned by the executing dialog in shared-pool system variable ZISPFRC.
ZISPFRC is a shared pool input variable of length 8. The dialog can set ZISPFRC
to any value in the range of 0 to 16777215, except the values reserved for ISPF use
(900 through 999). This value must be left-justified and padded with blanks.

At termination, ISPF copies the value from ZISPFRC and passes it to the invoking
application (or Terminal Monitor Program) in register 15. If the value in ZISPFRC
is not within the valid range or is otherwise not valid, such as a value that is not

numeric, ISPF issues an appropriate line message and passes a return code of 908.
If the dialog has not set ZISPFRC to a value, ISPF returns a value of 0.

Notes:
1. CLIST procedures that invoke ISPSTART can check the CLIST variable LASTCC
for the ISPF return code. In REXX, check the variable rc after an ISPF function.

2. Even though ISPF restricts the return code value to the range 0 to 16777215,
other products or subsystems, such as JES when processing JCL condition
codes, can be more restrictive on return code values. See documentation for the
affected product for more information.

3. ZISPFRC should not be confused with the normal dialog return code set by the
function; it has no effect on ISPF log/list termination processing.

ZISPFRC is intended to be used by applications that invoke a dialog dedicated to a
single task or function. However, it is valid to set ZISPFRC from a selection panel
invoked by the ISPSTART command.

ISPF checks for the existence of ZISPFRC only at ISPF termination. If ZISPFRC is
set by any dialog other than the one invoked by the ISPSTART command, ISPF
ignores the value.

Return Codes from Termination Dialogs
Error codes that ISPF can return in register 15 to an application are:

908 ZISPEFRC value not valid
920 ISPSTART command syntax not valid

985 An attempt was made to start a GUI in batch mode, but no workstation
connection was made.

987 An attempt was made to start GUI with GUISCRW or GUISCRD and the
GUI intitialization failed.

988 An error occurred intializing IKJ[SATTN

989 The ISPF C/S component window was closed while still running ISPF in
GUI mode

990 An error occurred running in batch mode. If ZISPFRC has not been set
previously, and ISPF encounters a severe error that terminates the product,
then 990 is set.

997 Uncorrectable TPUT error

998 ISPF initialization error. A 998 error code can result from:
¢ Required ISPF data element library not preallocated

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

* Error opening ISPF data element library

* ISPF data element library has invalid data set characteristics
* Error loading literals module

* Recursive ISPF call

ISPF issues a line message that indicates which of these errors caused the
998 return code.

999 ISPF environment not valid. A 999 error code can result from:
e TSO/MVS environment not valid
* Unsupported screen size

ISPF issues a line message that indicates which of these errors caused the
999 return code.

An Example Using the ZISPFRC Return Code

w shows a portion of a background job that invokes ISPF. The final job step
executes only if the job step that invoked the ISPF dialog terminates with a return
code of 8 or less.

//**

//* *
//* INVOKE ISPF TO EXECUTE DIALOG "DIALOG1". *
//* DIALOG1 PASSES BACK A RETURN CODE OF *
//* 20 IF IT DID NOT PROCESS SUCCESSFULLY. *
//* *

[] Fxkkkhxkdkhkkhkhdkkhkkhk ok khkkkk ko khk ko k ok ok k ok kK k A *
//ISPFSTEP EXEC PGM=IKJEFTO1,DYNAMNBR=30,REGION=2048K
/1%

//* ALLOCATE DIALOG AND ISPF PRODUCT LIBRARIES,

*

//* ISPF LOG DATA SET, AND TSO OUTPUT DATA SET. =
//* *
//ISPPROF DD DSN=USER1.ISPF.TABLES,DISP=SHR

//* ALLOCATE TSO INPUT DATA SET. *
//* *

//SYSTSIN DD =
PROFILE PREFIX(USER1) /* ESTABLISH PREFIX =/
ISPSTART CMD(%DIALOG1) /* INVOKE DIALOG1 */
/*
//**
/1*
//* EXECUTE NEXT JOB STEP ONLY IF THE ISPF STEP
//* ENDED WITH A RETURN CODE LESS THAN OR EQUAL
//* TO 8. THAT IS, BYPASS THE STEP IF 8 IS
//* LESS THAN THE ISPF RETURN CODE.
/1*
//**
//NEXTSTEP EXEC PGM=IKJEFTO1,DYNAMNBR=30,REGION=2048K,
/1 COND=(8,LT,ISPFSTEP)

* % Xk %k *

Figure 13. Sample Background ISPF Job

The portion of the invoked dialog, DIALOGI, that establishes the value in system
variable ZISPFRC is shown in Fi

Chapter 2. Controlling ISPF Sessions 23

PROC ©

IF &MAXCC > 8 THEN +
DO
SET &ZISPFRC = 20
VPUT (ZISPFRC) SHARED
END
EXIT CODE(0)

Figure 14. Sample Dialog Using System Variable ZISPFRC

ISPF Test and Trace Modes

24

The testing modes of ISPF provide special processing actions to help debug a
dialog. Consider using the Dialog Test (option 7) facility.

You can specify any one of four mutually exclusive keyword parameters on the
ISPSTART command to control the operational mode when testing a dialog:
TEST Test mode
TESTX

Extended test mode; logged messages are displayed
TRACE

Trace mode; ISPF service calls are logged
TRACEX

Extended trace mode; ISPF service calls are logged and displayed

Test Modes

In TEST mode, ISPF operates differently from normal mode in that:

* Panel and message definitions are fetched again from the panel and message
files when a panel name or message ID is specified in an ISPF service. In normal
mode, the most recently accessed panel definitions are retained in virtual
storage. If you have modified the panel or message file, use of TEST mode
ensures that the latest version of each panel or message is accessed during a test
run.

Using an editor to modify a panel, message, or skeleton can result in an
additional DASD extent being required for the associated data set. DASD rarely
(if ever) gains new extents as the result of the execution of software (with the
possible exception of DASD formatting software). It can also be caused by link
editing a module. When a new extent is allocated, you can access the
modification only by first terminating and then invoking ISPF again.

¢ Tutorial panels are displayed with current panel name, previous panel name,
and previous message ID on the bottom line of the display screen. This assists
you in identifying the position of the panel in the tutorial hierarchy.

* Screen printouts, obtained through use of the PRINT or PRINT-HI commands,
include line numbers, current panel name, and message ID.

* In PDF, the index listing (option 3.1) for a partitioned data set includes TTR data
for each member of the data set.

* If a dialog function is operating in the CANCEL error mode, the default, the
panel that is displayed on an error allows you to force the dialog to continue in

spite of the error. Results from that point on, however, are unpredictable and
ISPF can ABEND.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

¢ Other than the situation described in the previous item, and if you have an
ABEND from a SELECTed command as described under the SELECT service in
ISPF Services Guide any ISPF-detected error, ABEND, or program interrupt forces
an ABEND of ISPE. You can also force an ABEND by entering ABEND or
CRASH in the command line of any panel.

e The PA1 key causes an immediate exit from ISPF.

The ISPF controller task attaches one ISPF subtask for each logical screen. Any
additional logical screens are created by the SPLIT command and there can be up
to four screens on a 3290 terminal.

If an ISPF subtask ABENDs, pressing Enter after the ABEND message appears
generates a dump, provided that a SYSUDUMP, SYSMDUMP, or SYSABEND data
set has been allocated.

Dialogs invoked with the SELECT CMD(XXX) cause an attach of a new subtask
under the ISPF subtask. If an ABEND occurs under the new subtask, an immediate
dump is taken.

In TESTX mode, ISPF operates the same as it does in TEST mode, except that all
messages written to the ISPF log file are also displayed at the terminal.

ISPF provides the ENVIRON command, which allows you to cause a dump
following an ABEND condition, even if ISPF is not running in TEST mode. See
‘1si " for a description of using

the ENVIRON command.

ISPF Trace Modes

In TRACE mode, ISPF operates as it does in TEST mode, except that a message is
written to the ISPF log file when any ISPF service is invoked, even if CONTROL
ERRORS RETURN has been issued, and when any error is detected by an ISPF
service. Note that only CLIST, APL2, and CALL ISPEXEC service requests are
recorded. This does not include service requests issued under Dialog Test option
7.6. CALL ISPLINK requests for service are not recorded in the log file.

In TRACEX (extended trace) mode, ISPF operates the same as it does in TRACE
mode except that all messages written to the ISPF log file, including the trace
messages, are also displayed at the terminal. If the length of the message text
exceeds the width of the terminal screen, the message will be truncated.

Invoking Authorized Programs

You can invoke authorized programs by using the SELECT service, a selection
panel, a command table, or by using the TSO CALL command under ISPE. ISPF
uses the TSO Service Facility IKJEFTSR to invoke authorized commands and
programs. Authorized programs are invoked under the TSO TMP (Terminal
Monitor Program) and therefore should not reside in the ISPLLIB library.
Authorized programs cannot issue dialog service requests. Refer to TSO/E Version 2
Customization for information on adding authorized programs and commands to
the list maintained by your installation.

Chapter 2. Controlling ISPF Sessions 25

Invoking TSO Commands

TSO commands can be initiated by use of the SELECT dialog service (with the
CMD keyword), from a selection panel, from a command table, by entering the
ISPF TSO system command in the command field of any panel, or be contained in
a CLIST or REXX command procedure that is invoked under ISPE.

You can invoke authorized TSO commands by using the SELECT service, a
selection panel, or a command table. Authorized commands are attached under the
TSO TMP (Terminal Monitor Program) and, therefore, should not reside in the
ISPLLIB library. Authorized commands cannot issue dialog service requests.

You can execute most TSO commands under ISPF. The following commands are
not allowed:

* LOGON

* LOGOFF

* SPF

 ISPF

* PDF

+ ISPSTART

» TEST

e Commands that are restricted by TSO or PCF (Program Control Facility).

Note: The LOGON, LOGOFF, and TEST commands can be executed within ISPF if
the TSOEXEC interface is used, for example, TSO TSOEXEC LOGOFE. In
that case, the LOGON and LOGOFF commands are processed upon ISPF
termination, instead of returning to TSO READY. When the TEST command
is being executed, TSO TEST is entered immediately. However, because
TSOEXEC executes commands in a parallel TMP structure, ISPF dialogs
cannot be run under TSO TEST in this situation.

Compiled REXX Requirements

ISPF now supports Compiled REXX Load Modules through ISPSTART and the
SELECT Service. The REXX program must be compiled with the OBJECT option of
the IBM Compiler for REXX/370. This OBJECT output needs to be link edited with
the CPPL stub that is a part of the IBM Library for REXX/370.

The SELECT service and ISPSTART command contains a new value, CREX, for the
LANG parameter on the CMD keyword. The specification of LANG(CREX) when
using the CMD keyword indicates that it is a Compiled REXX load module and
that a REXX function pool is to be used for variable manipulation.

The CPPL stub takes the parameters that are passed by the SELECT CMD service,
or the ISPSTART invocation, and converts them into arguments for the REXX
program. For complete details on how to create a REXX load module, see IBM
Compiler and Library for REXX/370 User’s Guide and Reference.

Compiled REXX programs, compiled with the CEXEC option, should be executed
using the CMD option of the SELECT service or ISPSTART command and should
NOT use the LANG(CREX) parameter.

CLIST Requirements

A CLIST cannot invoke any of the restricted TSO commands. TERMIN command
procedure statements can cause unpredictable results.

26 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Note: If a CLIST contains CONTROL MAIN, the TSO input stack is not flushed

after an ISPF severe error.

When a CLIST command procedure is executing under ISPF, the ATTN statement
in the procedure defines how attention interrupts are to be handled. You can find
information about using attention exits in TSO/E Version 2 CLISTs and TSO/E
Version 2 Programming Services

To use attention exits in a CLIST ISPF dialog, your system must be MVS SP2.2.0 or
later.

Restrictions to Using Attention Exits from CLISTs

Restrictions that apply to using attention exits from a CLIST dialog are:

CLIST attention exits are not supported when running in ISPF TEST or TRACE
modes. This is because the ISPF attention exit routine is not established in TEST
or TRACE modes.

The CLIST must issue a null command to return from an attention exit. If the
dialog issues a TSO command to terminate the exit routine, ISPF discards the
command. The ISPF dialog then resumes execution as if CONTROL MAIN
NOFLUSH were in effect for this CLIST.

You can stack CLIST attention exits only within one SELECT CMD level. An exit
applies only to the logical screen from which the CLIST owning the attention
exit was invoked. Therefore, when you are operating in split-screen mode,
invoking a CLIST attention exit from one logical screen has no effect on the
other logical screen(s).

You should not invoke an ISPF dialog service from a CLIST attention exit
routine. If you do, results are unpredictable.

Attention interrupts initiated while an exit routine is executing are not honored.

Examples of CLIST Attention Exit Process Flow

Single CLIST with One Attention Exit

1.

2.
3.
4.

From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has
one attention exit routine, named ATTNI1.

CLIST1 displays PANELL.
Press the attention key.
Exit routine ATTN1 executes and PANEL1 redisplays.

Nested CLISTs with Two Attention Exits (One SELECT Level)

1.

o o A~ W

® N

From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has
one attention exit routine, named ATTNI.

CLIST1 invokes procedure CLIST2 by using the TSO EXEC command. CLIST2
has one attention exit routine, named ATTN2.

CLIST2 displays PANEL2.
Press the attention key.
Exit routine ATTN2 executes and PANEL2 redisplays.

Press Enter to return control to CLIST2. CLIST2 then terminates processing and
control returns to CLIST1.

CLIST1 displays PANELL.
Press the attention key.
Exit routine ATTN1 executes and PANEL1 redisplays.

Chapter 2. Controlling ISPF Sessions 27

Nested CLISTs with One Attention Exit

1.

I S

From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has
one attention exit routine, named ATTNI1.

CLIST1 invokes procedure CLIST2 by using the TSO EXEC command. CLIST2
has no attention exit routine.

CLIST2 displays PANEL2.
Press the attention key.
Exit routine ATTN1 executes and PANEL2 redisplays.

Press Enter to return control to CLIST2. CLIST2 then terminates processing and
control returns to CLIST1.

CLIST1 displays PANELL1.
Press the attention key.
Exit routine ATTN1 executes and PANELL1 redisplays.

Nested CLISTs and SELECT Levels with One Attention Exit

1.

From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has
one attention exit routine, named ATTNI1.

CLIST1 invokes procedure CLIST2 by using the ISPEXEC SELECT
CMD(CLIST2) command. CLIST2 has no attention exit routine.

Press the attention key.

Because CLIST2 has no attention exit routine, and ISPF does not propagate
attention exits across SELECT levels:

* An error message indicates that a CLIST was interrupted by an attention
condition.

* The logical screen terminates and restarts, causing the primary option menu
to redisplay.

Using APL2

ISPF permits the use of APL2, as follows:

ISPF dialogs can be written in an APL2 workspace.
APL2 can be selected as a command, initializing an ISPF-APL2 environment.
APL2 functions can be selected as options (from a selection panel), as ISPF

commands (from an application command table), or from another dialog
function, once the ISPF-APL2 environment has been established.

All dialog manager services available to the command language dialog writer
are executable from the APL2 workspace after the ISPF-APL2 environment has
been established.

ISPF views the APL2 workspace variables as the dialog function pool whenever
an ISPF dialog service is executing.

ISPF supports APL on a DBCS device with an APL keyboard.

The ISPF/GDDM* interface is not available to an APL2 dialog. However, the APL2
dialog can interface directly with GDDM and interleave the ISPF and GDDM
services.

Invoking APL2

You can invoke APL2 by specifying the APL2 command and its appropriate
keywords as the value of the CMD keyword of the SELECT service. In addition,
you must code the SELECT keyword and value “LANG(APL)” on the SELECT

28 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

statement. The LANG(APL) information provides the basis for establishing an
ISPF-APL2 environment, and is required if any ISPF dialog services are to be used.

You can code any of the APL2 command keywords. However, the following can be
of special interest:

APNAMES
ISPF and APL2 communicate through an APL2 Auxiliary Processor (AP),
ISPAPAUX, which is released with the ISPF product. This AP, number 317,
must be made available to APL2 when APL2 is invoked, as follows:

* The dialog writer can specify ISPAPAUX in the APNAMES list of
auxiliary processors to be dynamically loaded.

When APL2 is invoked, ISPAPAUX must exist as a load module in a
system library, or in a private library named by the LOADLIB keyword.

LOADLIB
Keep in mind that if this keyword is used, the dialog must be changed or
accept this keyword’s value dynamically (for example, through a variable),
if the name of the private library containing the AP is changed.

TERMCODE (code)
The user is prompted to enter an appropriate character if this keyword is
not coded. This allows APL2 to identify the terminal type that is currently
being used.

Typically, a dialog ensures that the user does not have to perform this extra
step by identifying the terminal type through the TERMCODE keyword.

ISPF system variable ZTERM contains this information. However, ISPF
terminal types are different from those of APL2. For those dialog writers
who wish to make use of currently available ISPF information, program
dialog ISPAPTT can be selected before the call of APL2. ISPAPTT expects
one parameter, which is the ISPF variable name into which the
corresponding APL2 terminal type is returned. The variable is created in
the shared variable pool.

For a CLIST, the use of ISPAPTT can look as follows:

ISPEXEC SELECT PGM(ISPAPTT) PARM(APLTT)
ISPEXEC VGET APLTT
ISPEXEC SELECT CMD(APL2..... TERMCODE (8APLTT)) LANG(APL)

The following ISPF to APL2 mappings are supported:

ISPF APL2
(ZTERM)

3277 3277
3278 3279
3277A 32771
3278A 32791
32787 32791
3278CF 3279
3277KN 3277
3278KN 3279

Chapter 2. Controlling ISPF Sessions 29

30

If ISPF is executing in the background, then ISPAPTT will return a terminal
code of 1.

If ZTERM contains a value other than those listed above, the specified
variable is set to a value of 3277 in the shared variable pool.

FREESIZE, WSSIZE
Some combination of these keywords should be coded to accommodate the
user’s storage requirements; however, remember that ISPF and the
ISPF-APL2 AP require storage (beyond that currently allocated) to execute,
especially if ISPF split-screen facilities are to be used.

INPUT
A user dialog can specify the INPUT keyword to load a given workspace,
start an APL2 dialog function, and terminate APL2. This allows a user to
enter APL2, use APL2 dialog capabilities, and leave APL2 without needing
special APL2 expertise.

For example, to start a dialog named EMPLOY in workspace MYWS:
...... INPUT(')LOAD MYWS' 'EMPLOY' ')OFF HOLD')......

Note that a dialog function can also be started through the latent function
definition in the workspace. In addition, the Alternate Input Auxiliary
Processor, AP101, can be used to stack commands for execution.

If INPUT is coded and QUIET and PROFILE are not coded (see below), the
first ISPF panel can be refreshed before the keyboard is unlocked.

QUIET
A dialog can specify the QUIET keyword to suppress the APL2 entry and
exit information, so that the user does not see non-dialog APL2 messages.

PROFILE
A dialog can specify the PROFILE keyword with a value of null to
suppress any entry and exit APL2 session manager screens, so that the user
does not see any non-dialog panels.

Executing APL2 Functions

While it is possible to start an APL2 function dialog by using the INPUT keyword
(as described above), many applications find it necessary to invoke additional
APL2 functions as options (from a selection panel), as commands (from an
application command table), or from other dialog functions. Such functions are
selected by specifying the function request as the value of the SELECT CMD
keyword, and once again, specifying LANG(APL). Since APL2 has already been
started, and the APL2 environment established, the string is passed back to the
APL2 workspace, and an APL2 “EXECUTE” function is performed on the string.
For example, option 5 on a selection panel can be defined to APL2 function AVG
(assuming that APL2 has already been started) as follows:

5,'CI‘;ID(AVG 1234 5) LANG(APL)'

The return code for the selected function is passed back as a fullword of 0 (zero) if
no terminating (to a quad-EA) APL2 errors have occurred. Otherwise, a fullword
consisting of the quad-ET values in the two halfwords is returned.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

[1]
[2]
[3]
(4]

[15]

APL2 cannot be invoked more than once, either within the same screen or on more
than one screen. ISPF does nothing to prevent the second call. If APL2 is invoked a
second time while running under ISPFE, the results are unpredictable. Note that a
user can utilize ISPF split-screen capabilities as long as APL2 is not invoked on a
second screen.

Invoking ISPF Dialog Services in the APL2 Environment

A dialog service can be invoked by using the function form of ISPEXEC:
[n] Tastrc¢ISPEXEC character-vector

lastrc
Specifies the name of an APL2 variable in which the return code from the
service is to be stored.

character-vector
Specifies a vector of characters that contains parameters to be passed to the
dialog service. The format of the vector is the same as that for dialog service
statements for command procedures written in CLIST.

A workspace containing the ISPEXEC function is provided with ISPE. All dialog
writers must use this ISPEXEC function, as it contains the interface to ISPF and
handles the implementation of commands (through the APL2 “EXECUTE”
function); otherwise, results are unpredictable.

For example:

aOPEN THE TABLE

LASTCC<ISPEXEC 'TBOPEN TABLE NOWRITE'
=~(LASTCC = 0)/NORMALCONT

aPROCESS ERRORS HERE

APL2 Workspace as the ISPF Function Pool

When an APL2 function invokes an ISPF dialog service, the APL2 workspace is
considered to be the ISPF function pool. The dialog writer need not do anything
special to make use of this mechanism. However, the following restrictions apply:

* Any variable retrieved or set is the most local to the currently executing APL2
function.

* The dialog writer should not use variables whose names begin with the three
characters ISP; these names are reserved for ISPF. All variables used in the
ISPEXEC function have names that start with these three characters.

* Only those variables whose names and formats fit both ISPF and APL2 protocols
can be used for ISPF entities such as panels or tables:

— All variable names must be 1 to 8 characters in length, composed of
alphanumeric characters (A-Z, 0-9), of which the first must not be numeric.
Note that #, $, and @ are not allowed.

— All variable values must be simple character strings; APL2 general data types
are not allowed. Note that the only acceptable null vector is that for character
strings (”).

Chapter 2. Controlling ISPF Sessions 31

32

— If an attempt is made to use a name or format incompatible with ISPF for an
ISPF entity, a severe error occurs. Any APL2 name or format can be used
within a dialog function, as long as that variable is not used for an ISPF
entity.

— Whenever an APL2 function is selected after APL2 is started, the original
APL2 function pool (the APL2 workspace) is used. This implies that
information can remain in the function pool from previous SELECTs, and the
dialog writer must handle any such cases. Moreover, this rule is unaffected by
SELECTs where new shared or profile pools are created; it is the responsibility
of the dialog writer to ensure that the integrity of the workspace is
maintained.

— If the PDF component is installed, and the Dialog Test Variables option is
requested, only those variables that have the correct name and format are
displayed; if an attempt is made to enter a variable with a name that is not
valid (to ISPF or APL2), an error occurs. The variables displayed are the most
local to the currently executing function.

— A maximum of 64K bytes can be retrieved from the APL2 workspace during
the execution of a DM service.

Interface between ISPF and APL2

The interface between ISPF and APL2 is like a telephone call. If one side of the
communication is broken, any attempt to use the interface causes error messages to
be generated. The link between the two products can be broken by:

¢ The APL2 user “hanging up”. For example, if a new workspace is loaded and
there are still ISPF service requests that have not completed (for example,
options in the selection panel process), the ISPF Auxiliary Processor (ISPAPAUX)
issues an error message, informs ISPF and waits for the process to begin again
(by “hanging up” until another ISPF request is made). ISPF issues a severe error
message telling the user that the link has been damaged.

If the user is in ISPF TEST mode, then, on user request, ISPF attempts to reshow
all panels traversed in an effort to unnest all service requests. When all requests
have been unnested, ISPF will again wait for the ISPF Auxiliary Processor to
make a request. During the unnesting process, any attempts to invoke APL2
functions are rejected, severe error messages are issued, and any requests for
APL2 variables are logged.

e The APL2 user “cutting the line”. For example, if the user terminates APL2
while there are still outstanding APL2 function requests from ISPF (for example,
options in the selection panel process), the ISPF Auxiliary Processor (ISPAPAUX)
issues an error message, informs ISPF, and terminates. ISPF issues a severe error
message telling the user that the link has been damaged, and if in TEST mode,
proceeds to unnest as described above. When all requests have been unnested,
APL2 will be terminated. During the unnesting process, any attempts to invoke
APL2 functions are rejected, severe error messages are issued, and any requests
for APL2 variables are logged.

* An APL2 failure. This is handled as if the line were cut, assuming APL2
performs recovery and returns to ISPE.

* An ISPF failure. In this case, ISPF or the logical screen can fail, causing APL2
termination.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

Subtasking Support

A dialog attached by ISPF, as described in i "

can invoke a dialog service. It does this by a call to either the ISPLINK or ISPEXEC
interfaces from any subtask level. For subtasks to issue ISPF services, the program
that attaches these subtasks must be invoked with the SELECT(cmd) service.

In addition, ISPF allows a task to detach its subtask at any time, even if an ISPF
service invoked by that subtask is processing. The SUBTASK keyword of the
CONTROL service, described in ISPF Services Guide , provides additional
information. Multiple dialog services issued from multiple tasks executing
asynchronously are not supported, and results will be unpredictable.

ESTAE Restrictions

Programs that code their own ESTAE routines should not issue ISPF services
within the MVS ESTAE routine. Unpredictable results can occur. For more
information on using MVS macros, refer to MVS/XA Supervisor Services and Macros

ISPF Services in Batch Mode

When initiated in a batch environment, ISPF services execute as a background
command. Background calls are generally used to invoke ISPF table and file
tailoring services. However, access to other dialog services is also available.

Command Processors in the TSO Batch Environment

TSO provides facilities for executing command processors in the batch
environment. The JCL stream provides for data sets to be preallocated prior to the
call of any command. Invoke the Terminal Monitor Program (TMP) using the
EXEC statement to establish the necessary control blocks for the TSO environment.
The command input stream is accessed from the SYSTSIN DD statement. All
terminal line I/O outputs issued by the TSO 1/O service routines are directed to
the SYSTSPRT DD statement definition. Allocate ISPF libraries by using DD
statements. Panel, message, skeleton, table, and profile data sets must be
preallocated. While not required, it is recommended that the log data set also be
preallocated. If a log data set is dynamically allocated, it is always kept at ISPF
termination.

To invoke ISPF, place the ISPSTART command in the SYSTSIN input stream with
the PANEL, CMD, or PGM keywords that name the dialog to be invoked.

Note: When running on MVS with TSO/E Version 2 Release 1, ISPF does not read
and execute the CLIST statements that follow the ISPSTART command. With
ISPF running in batch (background) mode in the MVS environment with
TSO/E Version 2 Release 1, you can select a CLIST procedure.

A user ID is selected for the background job as follows:
1. If available, the user ID supplied during RACF authorization checking is used.

2. If a user ID is not available from RACEF, the prefix supplied with the TSO
PROFILE command is used.

3. If neither of the above is available, the default is BATCH.

Although the user ID defaults to BATCH, the prefix used by ISPF when
dynamically allocating a data set has no default. Therefore, a prefix should always

Chapter 2. Controlling ISPF Sessions 33

be supplied on the TSO PROFILE command. At various times, ISPF attempts
dynamic allocation and if no prefix has been supplied, allocation will fail and the
job will ABEND. Multiple jobs executing concurrently must have unique prefixes.

The contents of positions 17-24 in system variable ZENVIR indicate whether ISPF
is running interactively (TSO followed by five blanks) or background (BATCH
followed by three blanks).

Sample Batch Job

ﬁ shows a sample batch job. This job invokes the MVS/TSO Terminal
Monitor Program (TMP) which, in MVS, establishes the environment necessary to
attach command processors. The ISPSTART command is specified in the TSO
background input stream (SYSTSIN) with the name of a CLIST (TBUPDATE) that
contains the ISPF services to be executed.

% % % Top of File % * =

//ISPPLIB DD DSN=ISP.SISPPENU,DISP=SHR
//ISPMLIB DD DSN=ISP.SISPMENU,DISP=SHR
//ISPSLIB DD DSN=ISP.SISPSENU,DISP=SHR
/! DD DSN=ISP.SISPSLIB,DISP=SHR

//ISPTLIB DD DSN=ISP.SISPTENU,DISP=SHR
// DD DSN=ISP.SISPTLIB,DISP=SHR

//SYSPROC DD DSN=ISP.SISPEXEC,DISP=SHR
// DD DSN=ISP.SISPCLIB,DISP=SHR

//USERAA JOB (AA04,BIN1,000000),'I. M. USERAA',
// CLASS=L,MSGCLASS=A,NOTIFY=USERAA,MSGLEVEL=(1,1)

S */
//* EXECUTE ISPF COMMAND IN THE BACKGROUND */
S */
//ISPFBACK EXEC PGM=IKJEFTO1,DYNAMNBR=25,REGION=1024K

/1%

//*- - - ALLOCATE PROFILE, PANELS, MSGS, PROCS, AND LOG - -

//ISPPROF DD DSN=USERAA.ISPF.PROFILE,DISP=0LD
//ISPPLIB DD DSN=ISP.SISPPENU,DISP=SHR
//ISPMLIB DD DSN=ISP.SISPMENU,DISP=SHR
//ISPSLIB DD DSN=ISP.SISPSENU,DISP=SHR

// DD DSN=ISP.SISPSLIB,DISP=SHR
//ISPLOG DD DSN=USERAA.ISPF.LOG,DISP=SHR
/1%

Figure 15. MVS Batch Job (Part 1 of 2)

34 7/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Batch

//#%- - - ALLOCATE TABLE DATA SETS = = = = = = = = = = - - */
//ISPTLIB DD DSN=ISP.SISPTENU,DISP=SHR

// DD DSN=ISP.SISPTLIB,DISP=SHR

//ISPTABL DD DSN=USERAA.ISPF.TABLES,DISP=SHR

/1%

//*- - - ALLOCATE DIALOG PROGRAM AND CLIST LIBRARIES- - - %/

//ISPLLIB DD DSN=USERAA.ISPF.LOAD,DISP=SHR
//SYSPROC DD DSN=ISP.SISPEXEC,DISP=SHR

// DD DSN=ISP.SISPCLIB,DISP=SHR
/1%
//*- - - ALLOCATE TSO BACKGROUND OUTPUT AND INPUT DS- - - */

//SYSTSPRT DD DSNAME=USERAA.ISPF.ISPFPRNT,DISP=SHR
//SYSTSIN DD =

PROFILE PREFIX(USERAA) /* ESTABLISH PREFIX */
ISPSTART CMD(%TBUPDATE) /* INVOKE CLIST DIALOG =*/
/*

Figure 15. MVS Batch Job (Part 2 of 2)

Processing Errors

ISPF terminates with an error message if a required library is not available. The
ISPSTART command must also be invoked naming either a CLIST, PGM function,
or selection panel. If no dialog is specified, a message is issued. These messages
are directed to the data set defined by the SYSTSPRT DD statement.

Errors encountered during background dialog execution are handled in the same
manner as errors encountered during foreground execution. Messages normally
written to the ISPF log data set for severe errors are also written to the SYSTSPRT
file. This is useful when executing a CLIST dialog because any error messages are
listed immediately after the ISPEXEC service in which the error occurred.

If a function encounters an ABEND, the entire ISPF batch job stream terminates. A
message is issued to the SYSTSPRT file indicating the type of ABEND.

Display Facility for Background Panel Processing

The Batch Display Facility allows applications to simulate full-screen write
operations while ISPF is executing in the background. This requires that dialogs
provide the input to ISPF that would normally be supplied by the user or by
information associated with the type of terminal being used. Much of this is done
by having the dialog assign values to panel input variables, and by supplying
screen size information through keywords on the ISPSTART command.

Batch execution has traditionally not allowed the use of services that require user
interaction. Any full-screen write operation would result in an error condition.

The Batch Display Facility overcomes these limitations. Although there is no user
interaction during execution; the Batch Display Facility does allow background
execution of interactive services. These services include:

» DISPLAY

» TBDISPL

» SELECT PANEL

* SETMSG

* PQUERY.

Chapter 2. Controlling ISPF Sessions 35

36

These services are issued for batch just as they are issued for dialogs running in
interactive mode. ISPF GDDM services do not run in the background, and thus,
cannot be requested in a batch environment.

All ISPF commands except SPLIT and SPLITV can be executed in dialogs running
in batch mode.

Installations can easily convert current interactive applications that use these
services so they run in a batch environment. When you are running in a batch
environment, you cannot direct your display to a workstation; that is, the GUI
parameter on the ISPSTART command is not supported in a batch environment.

Supplying Input in Lieu of Interactive Users
When an application is running in batch, there is no user to respond to panel input

operations. Therefore, the primary requirement for running interactive applications
in batch is to supply expected input data by an alternate means. For example,
panel variables can be given values by dialog function statements or by the
processing specified in the panel’s executable sections. This processing is begun in
the batch environment as though a user had pressed Enter. In the absence of an
alternative action on the dialog’s part, ISPF assumes an ENTER condition
following a panel display.

A dialog can override the ENTER condition and establish an END condition by
doing one of the following:

* Using the .RESP control variable

* Setting the panel command field to END

* Issuing a CONTROL NONDISPL END prior to the display operation.

Supplying Batch Terminal Characteristics

In a batch environment there is no terminal from which ISPF can get screen width
and screen depth values, so you must supply to ISPF data related to terminal type.
You can include two optional keywords, BATSCRW and BATSCRD, on the
ISPSTART command line to specify, respectively, screen width and screen depth
values. The default values, if you do not include these keywords, are a screen
width of 80 characters and a screen depth of 32 lines. The width and depth values,
whether specified on the ISPSTART command or through the default values,
establish the values in system variables ZSCREENW, ZSCREEND, ZSCRMAXW,
and ZSCRMAXD.

In addition to the display services, use of the PQUERY service requires that the
screen width and depth values be supplied to ISPF, either through default values
or as defined on the ISPSTART command.

When running batch, terminal characteristics cannot be changed during a session,
although some characteristics can be changed during an interactive session. For
example, when ISPF is running interactively you can specify 3278 Model 5 and
3290 screen formatting. In batch mode, a dialog does not interact with a physical
screen. Therefore, screen size, specified by including the BATSCRW and BATSCRD
keywords on the ISPSTART command, is fixed for the duration of the batch
session.

When running in batch mode, you can include the BDBCS keyword on the
ISPSTART command. ISPF then processes the dialog as though it were running on
a DBCS terminal.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

The value in system variable ZCOLORS defines the number of colors (either 1 or
7) that a terminal can display. In batch mode, ISPF sets ZCOLORS to 1.

The value in system variable ZHILITE (YES or NO) determines if a terminal is to
have extended highlighting capability, including underscore, blinking, and reverse
video. In batch mode, ISPF sets ZHILITE to NO.

Message Processing in the Batch Environment
In an interactive environment ISPF displays two types of messages:

* Informational messages, normally those resulting from the MSG keyword
specified on the SETMSG, DISPLAY, or TBDISPL service

* Error messages, including those resulting from the .MSG control variable in an
executable panel section.

When running in a batch environment, ISPF writes any informational or error
messages to the ISPF log data set at the processing point that the messages would
normally be displayed to a user. The information logged includes the name of the
panel associated with the message, followed by the short message and the long
message.

A MSG-initiated error message plus an ENTER condition causes a panel redisplay.
In a batch environment, there is no interactive user to correct the error, so it must
be handled by statements in the panel’s)REINIT or)PROC sections. This leads to
the possibility of a .MSG-redisplay loop if the error condition is not corrected.
Some panel language functions that can lead to this problem are VER, TRANS,
ADDSOSI, DELSOSI, .MSG, and PANEXIT. To prevent this loop, a BREDIMAX
keyword on the ISPSTART command is available to specify the maximum number
(default 2) of redisplays. If this number of redisplays is exceeded, a severe error
condition (return code 20) results and the related error message is written to
SYSTSPRT.

Command Processing in the Batch Environment
ISPF processes most commands when running in the batch environment in the
same way it processes them when running interactively, except the following:

e The SPLIT and SPLITV commands are disabled

* The ENVIRON, LOG, LIST, ISPPREP, KEYS, ZKEYS, and PESHOW TAILOR
commands can result in display loops.

Display Error Processing in the Batch Environment

When ISPF is running interactively with CONTROL ERRORS CANCEL in effect, a
return code of 12 or higher causes the ISPF error panel to display. These same
conditions in the batch environment cause the error panel message to be written to
the SYSTSPRT data set, after which ISPF terminates. In the interactive or batch
environment with CONTROL ERRORS RETURN in effect, control returns to the
dialog for error processing following a return code of 12 or higher.

How ISPF Handles Log and List Data Sets in the Batch
Environment

If ISPF allocates a log or list data set in the batch environment, it is always kept at
termination, regardless of the disposition specified on SETTINGS Option 0.

Avoiding Panel Loop Conditions in the Batch Environment
When writing new dialogs or altering existing dialogs to run in the batch
environment, dialog developers must be very careful not to create functions that
result in looping situations since user input is expected and none is supplied. See
! i in Li i i for more information.

Chapter 2. Controlling ISPF Sessions 37

38

For example, issuing the ISPPREP command causes ISPF to call an interactive
ISPPREP dialog, which will cause a loop condition in a batch environment.
Therefore, you should invoke the non-interactive ISPPREP facility directly by using
the SELECT PGM(SPPREP) service request as described for batch mode under

Cigure 53 on page 137,

The KEYS command can cause a loop condition because its processing termination
depends on an END or RETURN command. An ENTER condition, which ISPF
assumes in absence of an END or RETURN being forced, results only in another
panel display, which leads to a loop condition.

To help deal with possible looping situations, the BDISPMAX keyword on the
ISPSTART command is available for specifying the maximum number of panel
displays that can occur during a session. The default value is 100. If the number
specified in BDISPMAX is exceeded, a severe error condition (return code 20)
results and an error message, stating that the maximum number of displays has
been exceeded, is written to the SYSTSPRT data set.

ISPF Graphical User Interface in Batch Mode

z/0S V1R2.0 ISPF provides the capability to run the ISPF Client/Server (C/S)
component in a batch environment. You can start ISPF using the GUI parameter to
enable a C/S session to run on a specific workstation without tying up the
invoking session.

This function also enables you to capture REXX trace output (in SYSTSPRT), and to
invoke ISPF without a 3270 terminal, such as through an icon on the workstation
through APPC or TCP/IP, or through a Telnet linemode session.

Restrictions
When using the batch mode capabilities of the C/S, be sure to consider these
restrictions:

* The number of initiators on the batch machine. Because the JCL remains resident
for the duration of the session, you should be aware that you have reduced the
number of available initiators for other uses.

* The limitation of the C/S Server to 30 sessions.

* Each batch session must have a unique profile (just like each user ID).

* The PA1 key is not available within the GUI environment.

* Full-screen TPUT function is not supported.

* Because you are in batch mode, and therefore you are not using a TSO emulator,
GDDM is disabled and TSO line-mode output is not available.

* Other TSO batch limitations. Some commands might not be supported in GUI
Batch mode because of the inability to provide terminal input to them (such as
RECEIVE). Refer to the TSO User’s GUIDE for more information about running
TSO in batch mode.

Example JCL

The JCL job that follows can be run from your MVS session to invoke ISPF
running the Client/Server in batch mode. Before submitting this JCL job, you must
update it with this information:

* The jobcard information in line 1 must be furnished, and a unique jobname must
be used.

* Update "userid. PRIVATE" with your private libraries, if needed. If you do not
use private libraries, remove those data sets from the concatenation.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

* If your ISPF product data sets are not named "ISP.SISxxxx", update the data set

names.
* Update the TSO profile.
* Update the ISPSTART invocation with the session title.

* Update the GUI() keyword for either TCPIP (your_ip_address) or APPC
(your_lu_name), and remove the other keyword.

//userid0 your jobcard information here

//* JCL TO RUN ISPF IN BATCH

//WSGUI EXEC PGM=IKJEFTO1,REGION=4096K,TIME=1439,DYNAMNBR=200
//STEPLIB DD DSN=ISP.SISPLPA,DISP=SHR

// DD DSN=ISP.SISPLOAD,DISP=SHR

// DD DSN=ISP.SISPSASC,DISP=SHR

// DD DSN=userid.PRIVATE.LOAD,DISP=SHR
//ISPLLIB DD DSN=ISP.SISPLPA,DISP=SHR

// DD DSN=ISP.SISPLOAD,DISP=SHR

// DD DSN=ISP.SISPSASC,DISP=SHR

// DD DSN=userid.PRIVATE.LOAD,DISP=SHR
//SYSEXEC DD DSN=userid.PRIVATE.EXEC,DISP=SHR
// DD DSN=ISP.SISPEXEC,DISP=SHR
//SYSPROC DD DSN=userid.PRIVATE.CLIST,DISP=SHR
// DD DSN=ISP.SISPCLIB,DISP=SHR
//ISPMLIB DD DSN=userid.PRIVATE.MSGS,DISP=SHR
// DD DSN=ISP.SISPMENU,DISP=SHR
//ISPPLIB DD DSN=userid.PRIVATE.PANELS,DISP=SHR
// DD DSN=ISP.SISPPENU,DISP=SHR
//ISPSLIB DD DSN=userid.PRIVATE.SKELS,DISP=SHR
// DD DSN=ISP.SISPSLIB,DISP=SHR

// DD DSN=ISP.SISPSENU,DISP=SHR

//SYSIN DD DUMMY,DCB=(LRECL=120,BLKSIZE=2400,DSORG=PS,RECFM=FB)
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR

//SYSHELP DD DSN=SYS1.HELP,DISP=SHR

//ISPCTLO DD UNIT=SYSDA,

/! SPACE=(TRK, (5,5)),

/] DCB=(RECFM=FB, LRECL=80,BLKSIZE=6160) ,
/! DISP=(,DELETE,DELETE)

//ISPCTLL DD UNIT=SYSDA,

/1l SPACE=(TRK, (5,5)),

/] DCB=(RECFM=FB, LRECL=80,BLKSIZE=6160) ,
/] DISP=(,DELETE,DELETE)

//ISPCTL2 DD UNIT=SYSDA,

/] SPACE=(TRK, (5,5)),

/] DCB=(RECFM=FB, LRECL=80,BLKSIZE=6160),
/] DISP=(,DELETE,DELETE)

//ISPWRKO DD UNIT=SYSDA,

/] SPACE=(TRK, (5,5)),

/! DCB= (RECFM=FB, LRECL=256,BLKSIZE=2560) ,
/! DISP=(,DELETE,DELETE)

//ISPWRK1 DD UNIT=SYSDA,

/] SPACE=(TRK, (5,5)),

/] DCB=(RECFM=FB, LRECL=256,BLKSIZE=2560),
/] DISP=(,DELETE,DELETE)

//ISPWRK2 DD UNIT=SYSDA,

/] SPACE=(TRK, (5,5)),

/! DCB= (RECFM=FB, LRECL=256,BLKSIZE=2560),
/] DISP=(,DELETE,DELETE)

//ISPLSTO DD UNIT=SYSDA,

/] SPACE=(TRK, (5,5)),

/] DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210),
/! DISP=(,DELETE,DELETE)

//ISPLST1 DD UNIT=SYSDA,

/! SPACE=(TRK, (5,5)),

/1l DCB=(RECFM=FBA, LRECL=121,BLKSIZE=1210),
/1l DISP=(,DELETE,DELETE)

//ISPLST2 DD UNIT=SYSDA,

/1l SPACE=(TRK, (5,5)),

Chapter 2. Controlling ISPF Sessions

39

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210),
/! DISP=(,DELETE,DELETE)
//ISPTABL DD DSN=userid.PRIVATE.TABLES,DISP=SHR
//ISPTLIB DD DSN=userid.PRIVATE.TABLES,DISP=SHR
// DD DSN=ISP.SISPTENU,DISP=SHR
//SYSUDUMP DD DUMMY
//1SPLOG DD SYSOUT=T,
// DCB=(RECFM=VA, LRECL=125,BLKSIZE=129)
//ISPPROF DD DSN=userid.PRIVATE.TABLES,DISP=SHR
//SYSTSPRT DD DSN=userid.PRIVATE.TSOOUT,DISP=SHR
//*SYSTSPRT DD SYSOUT=(*)
//SYSPRINT DD SYSOUT=(*)
//SYSOUT DD SYSOUT=(*)
//SYSTSIN DD =

PROFILE PREFIX(profile)

PROFILE NOPROMPT

ISPSTART PANEL(ISR@PRIM) NEWAPPL(ISR) TITLE(your session title) +

GUI(IP:your_ ip_address) or GUI(LU:your_lu_name)

40 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 3. Introduction to Writing Dialogs

This chapter provides introductory information that explains how to use the ISPF
display, variable, table, file-tailoring, PDF, and other miscellaneous services to write

dialogs.

For more detailed information on using these services, refer to the ISPF Services

Guide

Using the Display Services

The display services allow a dialog to display information and interpret responses
from users. The display services are:

ADDPOP

DISPLAY

LIBDEF

REMPOP

SELECT

SETMSG

TBDISPL

© Copyright IBM Corp. 1980, 2001

Start pop-up window mode. The ADDPOP service specifies that
the following panel displays are to be in a pop-up window. It also
identifies the location of the pop-up window on the screen in
relation to the underlying panel or window.

Display a panel. The DISPLAY service reads a panel definition
from the panel files, initializes variable information in the panel
from the corresponding dialog variables in the function, shared, or
profile variable pools, and displays the panel on the screen.
Optionally, the DISPLAY service might superimpose a message on
the display.

After the user has entered information on the panel, the
information is stored in the corresponding dialog variables in the
function, shared, or profile variable pools, and the DISPLAY service
returns control to the calling function.

The COMMAND option on the DISPLAY service allows a dialog to
pass a chain of commands to ISPF for execution. This option is
explained fully in the ISPF Services Guide Use of the DISPLAY
service is illustrated in a function example later in this chapter.

Define optional search libraries. The LIBDEF service allows users
to define an optional, application-level set of libraries containing,
for example, messages or panels, to be searched before the
IBM-supplied ISPF libraries. Refer to the ISPF Services Guide for
more information.

Remove a pop-up window. The REMPOP service call removes a
pop-up window from the screen.

Select a panel or function. The SELECT service is used to display a
hierarchy of selection panels or invoke a function.

Display a message on the next panel. The SETMSG service
constructs a specified message from the message file in an ISPF
system save area. The message will be superimposed on the next
panel displayed by any DM service. The optional COND
parameter allows you to specify that the message is to be
displayed on the next panel only if there is no SETMSG request
pending.

Display a table. The TBDISPL service combines information from

41

Display Services

panel definitions with information stored in ISPF tables. It displays
selected rows from a table, and allows the user to identify rows for
processing.

Panel definitions used by the TBDISPL service contain
nonscrollable text, including column headings, followed by one or
more “model lines” that specify how each row from the table is to
be formatted in the scrollable area of the display. For more
information on TBDISPL, see L i

and the description of the TBDISPL service in ISPF
Services Guide

”

Example: Creating a Display with TBDISPL

The TBDISPL service displays information from an ISPF table on a panel formatted
by information on a panel definition. [Cable 1l illustrates an ISPF table named TAB1.

Table 1. TBDISPL — ISPF Table

RANK ID CITY STATE POPCH ROW
1 FLO621 Fort Myers fl +95.1 rl
2 NV1235 Las Vegas nv +69.0 r2
3 FL1972 Sarasota fl +68.0 r3
4 CO0649 Fort Collins co +66.0 r4
5 FL2337 West Palm Beach fl +64.3 r5
6 FLO608 Fort Lauderdale fl +63.6 6
7 TX0231 Bryan tx +61.5 r7
8 NV1833 Reno nv +60.0 r8
9 UT1656 Provo ut +58.4 r9
10 TX1321 McAllen tx +56.1 rl0

w illustrates a panel definition named PANT1.

R e e e R R T T R S S R S S R E Rt T L L

*)JAttr *

* @ Type(output) Intens(low) Just(asis) Caps(off) *

*)Body *
LR P Population Change --------=-------- * -

* +Command ==>Cmdfld +Scroll ==> samt+ =

* + *

* This table shows selected metropolitan areas which had a * ---> (A,m)
* *

* Targe relative increase in population from 1970 to 1980. *

* *

* +Metro area State Change *

* + (Percent) T

*)Model *

* OCity @State @popchg+ * mmmmmee > (B,m)
* *

*)Init *

* &samt=page *

*)Proc %

*)End *

B R R R R Rk R R R R R R R R R R R R R R R R Rk Rk k]

Figure 16. TBDISPL Panel Definition

42 7/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Display Services

The)BODY section of PAN1 defines the fixed portion of the display, area “A” in
Eigure 16 on page 42. The)MODEL section of PAN1 produces the scrollable portion
of the display, area “B” in

There can be up to eight model lines. Panel PAN1 has only one. The scrollable
portion of the display is formed by replicating the model lines to fill the screen.
Each of these replications, as well as the original, is known as a model set. Each
model set corresponds to a table row. Table rows are then read to fill in the
appropriate fields in the model set replications.

PAN1 displays only three (city, state, and popchg) of the five columns of table
TAB1. The model lines can include any number of the KEYS, NAMES, and
extension variables of the table. They can also include fields that are not variables
in the table. w shows the effect of displaying information from TAB1 on
panel PAN1.

T e T +
dom - R Population Change ------ ROW 4 OF 10

| Command ==> Scroll ==> Page

|

|

|

|

|
- (A |This table shows selected metropolitan areas which had a

| |large relative increase in population from 1970 to 1980.
|
|

|
|
|
|
|
|
|
________ | (Percent)

- |
|
|
|
|
|
|

| Metro area State Change
+--14- | Fort Collins co +66.0
| rb-- | West Palm Beach fl +64.3
| ré-- | Fort Lauderdale fl +63.6
(B)Yl r7-- | Bryan tx +61.5
| r8-- | Reno nv +60.0
| r9-- | Provo ut +58.4
| rio- | McAllen tx +56.1
e R BOTTOM OF DATA ****erssssssrsrens |
i I i I +

Figure 17. TBDISPL Display

When the TBDISPL service is invoked with the panel name specified, the scrollable
portion begins with the current row. That is, the current row is the top row
displayed. In this example, the current row pointer (CRP) for table TAB1 has been
set to row 4. Table rows are read starting with row 4 to fill in the appropriate fields
in the model set replications. If there were any non-table variables in the model
line, they would be filled in with their current values. Because there aren’t enough
rows in the table to fill the screen, the bottom-of-data marker is placed in the
display after the last row. The “empty” model sets beyond this marker are not
displayed.

In [[able 1 on page 47, the symbols rl through r10 label the 10 rows in the table
TAB1. The highlighted rows, r4 through r10, indicate that these rows provide the
information for the scrollable portion of the display (marked as area B in

)-

Eigure 14 is the result of using the TBDISPL service with panel definition PAN1 (

Figure 16 on page 44) and ISPF table TAB1 (lable 1 on page 42). Portion A is the

fixed portion defined by the)BODY section of PAN1. Portion B is the scrollable
portion defined by the)MODEL section of PAN1. The table information in the
display is the specified columns from row 4 to row 10.

Chapter 3. Introduction to Writing Dialogs ~ 43

Display Services

Processing Selected Rows

When a user changes data in a model set, the corresponding table row is said to be
selected for processing. More than one row can be selected in a single interaction.
Before the TBDISPL service returns control to the dialog function, the CRP is
positioned to the first of the selected rows. First means the row closest to the top of
the table, not the row that was selected first. The other selected rows are called
pending selected rows.

When the CRP is positioned at a selected row, the row is retrieved, meaning the
values from that row are stored in the appropriate dialog variables. Then, all input
fields in the selected model set on the display are stored in the corresponding
dialog variables.

The dialog function can then process the row in any manner it chooses. For
example, the function can invoke the TBPUT service to update the row, or it can
invoke the BROWSE service to examine a file specified in that row.

A call of the TBDISPL service is required to position the CRP to each pending
selected row. For these calls, neither the PANEL nor MSG parameter should be
specified.

The system variable ZTDSELS contains the number of selected rows. It can be
tested by the dialog function or in the)PROC section of the table display panel to
determine if any rows were selected. For example:
)PROC

. /* Process fixed portion fields =*/

IF (&ZTDSELS —= 0000) /* Any selected rows? */
. /* Process scrollable portion flds*/
)END

The interpretation of this variable is as follows:
0000 No selected rows
0001 One selected row (now the current row)

0002 Two selected rows, consisting of the current row and a pending selected
row

0003 Three selected rows, consisting of the current row and two pending
selected rows

n “n” selected rows, consisting of the current row and “n-1” pending
selected rows.

As TBDISPL is reinvoked without the PANEL and MSG parameters (to process any
pending selected rows), ZTDSELS is decremented by one. An example is shown in

44 7/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Display Services
Table 2. ZTDSELS Decrementation

DM Service User Action Value of ZTDSELS
TBDISPL TAB1 Selects 3 rows 0003 (current row plus two
PANEL(PANT1) pending selected rows)
TBDISPL TAB1 None 0002 (current row plus one
pending selected row)
TBDISPL TAB1 None 0001 (current row; no
pending selected rows)

Adding Table Rows Dynamically during Table Display
Scrolling

Assume that you have access to a large amount of related data that might be built
into a single table. However, you need to interface with only a subset of that data
during an ISPF session, but you are not sure just how extensive that subset is.
Normally, you would have to initially construct a table that included all possible
data that you might wish to access during a session before you began scrolling and
update activity on the table. This could lead to a great deal of unnecessary
overhead because you might include a lot of data in your table that you never
access.

By interacting with a set of function system variables, an ISPF function can
dynamically expand the table as you scroll through it during a session. The
function can specify that the table is to be expanded upward when the user has
scrolled past the top, expanded downward when the user has scrolled past the
bottom, or both. In this way, the function adds only the table rows that satisfy
your needs as you need them.

System Variables Are the ISPF-Function Interface

Eight system variables in the function pool are the vehicle for passing, between
ISPF and the function, values that control table expansion. These variables and the
functions they perform are:

ZTDRET (input; length 8)
The function sets variable ZTDRET in the function pool to a value (UP,
DOWN, or VERTICAL) that indicates to ISPF when control is to return to
the function so that more rows can be added to the table being processed.

ZTDADD (output; length 3)
ISPF sets this variable to either YES or NO before returning control to the
function. A value of YES indicates that the function needs to add more
rows to the table being processed. ZTDADD is normally set to NO,
indicating that no more rows need to be added to the table.

ZTDSCRP (input/output; length 6)
This variable is set to the row pointer (number of the row relative to the
top of the table) of the row that is to be at the top of the panel’s scrollable
area after the scroll request is processed. If ISPF cannot determine this
value, this variable is set to zero.

ZTDSRID (output; length 6)
ISPF sets this variable to the row ID of the row pointed to by the value in
variable ZTDSCRP. During table processing, the row pointer value for a
given row can change. However, the row ID of that row does not change.

ZTDAMT (output; length 4)
When ISPF returns control to the function with the value of variable

Chapter 3. Introduction to Writing Dialogs ~ 45

Display Services

ZTDADD set to YES, the value that ISPF has set in variable ZTDAMT tells
the function how many rows, based on the information available, ISPF
calculates should be added to the table to satisfy the current scroll request.

ZTDSIZE (output; length 4)
ISPF sets the value of ZTDSIZE to the total number of model sets; that is,
the number of table rows that fill the scrollable area of the panel. This is
not necessarily the same as the number of lines displayed in the panel’s
scrollable area.

ZTDLTOP (input; length 6)
The function can optionally set this variable to a value for ISPF to use in
calculating the value x (top-row-displayed) in the indicator 'ROW x OF y’,
which ISPF displays on a TBDISPL screen.

ZTDLROWS (input; length 6)
The function can optionally set this variable to a value for ISPF to use as
the value y (total rows in the logical table) in the indicator '/ROW x OF y’.

You can define variables ZTDAMT, ZTDSCRP, ZTDSRID, ZTDSIZE, ZTDLTOP, and
ZTDLROWS as fullword fixed binary in a program function. If you do not, the
default for each of these variables is character with lengths as specified in the

system variable charts in the /Appendix E_System Variables” on page 357.

Dynamic Table Building: To put the dynamic table building concept into
practice, a function first builds a basic table structure. The initial size of this table
is determined by balancing the minimum amount of table data that would satisfy
most anticipated user needs against the overhead of including a large amount of
table data to cover more contingencies. As more table rows are needed to satisfy
scroll requests, ISPF returns control to the function so that it can add those rows.

When a user issues a scroll request, there might be input fields in a panel that
have been typed into (selected for processing). In that case, the dialog first
processes all selected rows and then issues a TBDISPL request, without panel
name, to cause the panel to redisplay. If no table rows are needed to fill the scroll
request, ISPF completes the scroll and redisplays the panel. If more table rows are
needed to fill the scroll request, ISPF returns control to the function to add table
rows. Keep in mind that each time control returns to the function, the)PROC
section of the panel from which the table display was requested is executed. After
adding the table rows, the function issues a TBDISPL without a panel name to
complete the scroll and redisplay. Remember, specifying a panel name on a
TBDISPL request nullifies any pending selected rows or request for scrolling.

The values of a set of system variables in the function pool are the parameters
used in the interchange between ISPF and a function when dynamically increasing
the table size.

Using Variable ZTDRET

The need for expanding a table occurs when a user scrolls beyond the top or
bottom of the table while using the TBDISPL service. The function must set
variable ZTDRET to a value that tells ISPF when to return control so the function
can expand the table. The function sets ZTDRET to one of three possible values:

8) g Control returns to the function when the top of the scrollable data
is reached. This applies when you are building the table upward
from the bottom. The value UP has no effect when the bottom of
the scrollable data is reached.

DOWN Control returns to the function when the bottom of scrollable data

46 7z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Display Services

is reached. This applies when you are building the table
downward from the top. The value DOWN has no effect when the
top of the scrollable data is reached.

VERTICAL Control returns to the function when the top or bottom of the
scrollable data is reached.

The value in ZTDRET must be left-justified (no leading blanks). ISPF evaluates the
value of ZTDRET only when the function issues a TBDISPL request with a panel
name specified. This is true, even though in the interim, the function might change
the value of ZTDRET and issue TBDISPL requests without a panel name specified.
A TBDISPL request with a panel name specified also nullifies processing of any
pending selected table rows and any pending scroll request.

When a scroll request is pending, a TBDISPL request with a message ID specified
(but without a panel name specified) causes the panel to be redisplayed with the
message, but the scroll request is nullified.

Using Variable ZTDADD

Before returning control to a function from a TBDISPL request, ISPF sets function
variable ZTDADD to YES or NO, indicating to the function whether rows are to be
added to the table. The function normally receives a return code of 0 from the
TBDISPL service. It can then interrogate variable ZTDADD. If its value is "YES’,
then ZTDSCRP, ZTDSRID, ZTDAMT, and ZTDSIZE contain valid values.

ISPF normally returns control to the function for reasons other than to add table
rows. In those cases, ISPF sets the value of ZTDADD to NO. For example, the
function might need to interact with table rows that have been selected for
processing during a table display.

Using Variable ZTDAMT
When ISPF returns control to a function with variable ZTDADD set to YES, the

function must add rows to the table. If rows must be added to the table to satisfy a
scroll request, ISPF calculates, when possible, the number of rows that need to be
added to the table and returns that value to the function in variable ZTDAMT. The
function should use this value for determining the number of rows to add.

For some scroll requests, such as UP MAX or DOWN MAX, ISPF cannot determine
the number of rows to be added to the table. In those cases, ISPF returns a value of
0 to the function in ZTDAMT.

Using Variables ZTDSCRP and ZTDSRID

When ZTDSCRP contains a value other than 0, that value is the number of the
table row that is to be at the top of the panel’s scrollable area when the panel is
redisplayed. ISPF sets ZTDSCRP to a non-zero value if a user has requested a
downward scroll such that, when ISPF redisplays the panel following the scroll,
the top row displayed in the scrollable area existed in the table at the time of the
scroll request.

When the user requests an UP MAX or DOWN MAX, ISPF does not require the
ZTDSCRP value to position the table when it is redisplayed following the scroll. It
simply positions the table in the scrollable display area relative to the top table row
(UP MAX) or the bottom-of-data marker (DOWN MAX).

For other scroll requests that require that rows be added to the table, ISPF may not
be able to determine what the value of ZTDSCRP should be. In other words, one

Chapter 3. Introduction to Writing Dialogs 47

Display Services

of the table rows to be added by the function will be the new top row displayed.
ISPF has no way of knowing what the number of that row will be. In those cases,
ISPF returns a value of 0 to the function.

If a function receives a value of 0 in ZTDSCRP (other than for UP MAX or DOWN
MAX), it must set the variable’s value to the number of the new table row that
should display at the top of the panel’s scrollable area. When the function sets the
value of ZTDSCRP, the developer must take into account that the number specified
is the number of the top displayed table row relative to the top of the table as the
user who issued the scroll requests will see it. The developer must also take into
account any processing that takes place from the time the user requests a scroll to
the time the scroll is processed. For example, assume that variable ZTDRET is set
to UP. A user issues:

UpP 10

but there are only eight table rows above the top one currently displayed. ISPF
returns control to the function with variable ZTDAMT having a value of 2,
indicating that two lines must be added to the table to satisfy the current scroll
request. ISPF has set variable ZTDSCRP to 0 because the new top displayed row
did not exist in the table when the scroll was requested. Assume that, instead of
adding only the two required table rows at the top of the table to satisfy this scroll
request, the function adds 20 rows as a cushion against additional scrolling.
Therefore, the function must set ZTDSCRP to 19 so that ISPF will redisplay the
panel with the table positioned as the user wants it.

In addition to the row pointer in variable ZTDSCRP, ISPF returns to the function in
variable ZTDSRID the identification (rowid) of the row that is to be displayed at
the top of the scrollable area. As just described for ZTDSCRP, if ISPF cannot
determine which is to be the top row displayed, it returns a value of 0 in
ZTDSRID.

Using Variable ZTDSIZE

When ISPF returns control to the function to add more rows to a table, variable
ZTDSIZE contains the total number of table rows that can fit into the entire panel
scrollable area. Changes made to the panel structure, such as by PESHOW ON or
split-screen mode, do not affect this value. The value is the total number of
scrollable area rows.

Using Variables ZTDLTOP and ZTDLROWS
ISPF displays in the upper-right corner of a TBDISPL panel a default

top-row-displayed indicator, ' ROW x OF y’, where x is the current row pointer of
the top row displayed, and y is the total number of rows in the physical table
being displayed. By assigning a message ID to system variable ZTDMSG, a
function can specify a message whose short message text is to replace the
top-row-displayed indicator. However, keep in mind that in the following text all
references to the top-row-displayed indicator refer to the default supplied by ISPF,
not an alternate indicator specified by the application.

Because the dimensions of only the physical table are available, ISPF has no way of
assuring what the x and y values for the top-row-displayed indicator should be.
Therefore, it is the application’s responsibility to pass to ISPF the logical table
positioning in variables ZTDLTOP and ZTDLROWS, respectively, any time control
returns to the function to add table rows. If the function does not set these
variables to a value, ISPF calculates the x and y values according to the size and
position of the table being displayed.

48 7z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Display Services

For example, assume that, to satisfy scroll requests, an application is adding
records dynamically to a table from a 1000-record file. The application initially
builds the table with records 500 through 520. To pass these values to ISPF for use
as the x and y values in the top-row-displayed indicator, the application function
sets ZTDLTOP to 500 and sets ZTDLROWS to 1000. This causes the indicator text
'ROW 500 OF 1000” to be displayed initially on the TBDISPL panel. Then assume
that the user scrolls down 10 rows. ISPF, using the value in ZTDLTOP plus the 10
rows scrolled, changes the indicator to '/ROW 510 OF 1000’

In the example just described, assume that the user initially scrolled up 10 rows
instead of down 10 rows. Because the top row displayed was the top table row,
control returns to the application function to add rows to the top of the table so
the scroll request can be completed. As mentioned above, it is the application’s
responsibility to change the values of ZTDLTOP and ZTDLROWS as needed to
provide ISPF an accurate base for generating the top-row-displayed indicator.
Therefore, after adding rows to the top of the table, the function sets variable
ZTDLTOP to 490 before issuing the TBDISPL request to redisplay the table. The
text of the top-row-displayed indicator on the displayed panel is now "ROW 490
OF 1000'.

Example: Dynamic Table Expansion

This example illustrates how you can use dynamic expansion to reduce the initial
overhead of creating a large table for display.

Assume that you are given the task of creating an ISPF dialog that allows a user to
browse through a list of invoices for a given year. The list is maintained in a
sequential file, and it contains information (invoice number, transaction date, part
number, quantity, and customer name) for each transaction made during the year.

The file is fixed-block with a logical record length of 80 and a block size of 6160.
The first record in the file contains the year and the number of invoices that follow

in the file.

The format of this record is as follows:

Positions Format

1-4 Year

5-10 Number of invoices
11-80 Reserved

The format of each of the invoice records is as follows:

Positions Format

1-6 Invoice number

7-14 Transaction date (format mm/dd/yy)
15-18 Part number

19-21 Quantity (right justified)

22-46 Customer name (left justified)

47-80 Reserved

For example, the file might look something like this:

1986010000

00000101/06/867071100Acme Auto
00000201/06/860015 15Parts City
00000301/07/861023340Cary Auto Center
00000401/08/860231 1Parts Unlimited
00000501/08/863423805Bosworth's Parts

Chapter 3. Introduction to Writing Dialogs 49

Display Services

00000601/08/862341165Acme Parts
00000701/08/867653 20Acme Parts
00000801/08/863353100Bosworth's Parts
00000901/08/860003325Bosworth's Parts
00001001/08/863322 1Bosworth's Parts

00999912/15/860325 43ABC Parts
01000012/18/864234340ACME Parts

As you can see, the file is in no form to be browsed as it is. One way to implement
the dialog is to transfer the invoice file to a temporary ISPF table, and then display
the table with the TBDISPL service. However, since the number of invoices can be
relatively high (in this example, there are 10 000 invoices), the initial overhead of
reading every record and adding it to the table is unacceptable. As an alternative,
the dialog uses dynamic table expansion instead. Using this method, it adds only
the first 60 invoices to the table initially. Other invoices are added on an as-needed
basis as the user scrolls through the table. The user sees no evidence that only a
portion of the invoices are in the table.

w shows the definition for panel INVPANEL, which the dialog uses to
display table rows.

)Attr
@ Type(Output) Intens(Low)
)Body Expand(//)
+-/-/-%&year TRANSACTIONS+-/-/-
%Command ====>_cmd %Scroll ===> amt +

+

%Invoice Transaction Part
%Number Date Number Quantity Customer

)Model

@inv @date @part @qty @cust +
)Init

&amt = PAGE

)End

Figure 18. Panel Definition Dynamic Table Expansion

The PL/I dialog function, INVOICE (shown in [Eigure 19 on page 51), requires that
the invoice file be allocated to ddname INVFILE prior to execution of the dialog.

The intent of this example is to illustrate the dynamic expansion function. Normal
error checking and error processing is not shown, but should be included in all
dialogs.

50 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Display Services

INVOICE: PROC OPTIONS(MAIN);

/***/

/* THIS PROGRAM ILLUSTRATES THE USE OF DYNAMIC EXPANSION WITH */
/* THE TABLE DISPLAY SERVICE. THE PROGRAM READS RECORDS FROM A */
/* SEQUENTIAL FILE CONTAINING A LIST OF INVOICES AND ADDS THE */
/% INVOICE INFORMATION TO A TEMPORARY ISPF TABLE (INVTABLE). */
/% THE TABLE IS THEN DISPLAYED SO THAT THE USER CAN BROWSE */
/* THROUGH THE INVOICES. THE FOLLOWING STEPS ARE PERFORMED BY */
/% THE PROGRAM: */
/* */
/* 1. DEFINE THE FUNCTION POOL VARIABLES FOR THE TEMPORARY */
[TABLE, THE TBDISPL SYSTEM VARIABLES, AND MISCELLANEOUS +/
/* VARIABLES. %/
/* */
/* 2. ISSUE A TBCREATE SERVICE CALL FOR TEMPORARY TABLE, x/
/ INVTABLE. */
/* */
/* 3. OPEN FILE INVFILE AND READ THE HEADER RECORD INTO THE */
/ HEADER_RECORD STRUCTURE. */
/* */
/* 4. READ EACH OF THE FIRST 60 INVOICE RECORDS FROM INVFILE */
/* INTO THE INVOICE_RECORD STRUCTURE AND ADD THEM TO TABLE */
/% INVTABLE. USE THE TBADD MULT PARAMETER TO OPTIMIZE */
/ TBADD ROW STORAGE MANAGEMENT. */
/* 5. ISSUE A TBTOP SERVICE CALL TO POSITION THE CRP AT THE */
/ TOP OF INVTABLE. */
/* 6. INITIALIZE SYSTEM VARIABLE ZTDRET TO "DOWN" */
/% AND SYSTEM VARIABLE ZTDLROWS TO THE NUMBER OF INVOICES */
/% IN THE FILE. */
/* 7. ISSUE A TBDISPL SERVICE CALL THAT REFERS TO TABLE */
/ INVTABLE AND PANEL INVPANEL. */
/* 8. LOOP WHILE THE TBDISPL SERVICE RETURN CODE IS LESS THAN */
/% 8 (WHILE THE USER HAS NOT ISSUED THE END COMMAND AND */
[WHILE THERE HAVE BEEN NO SEVERE ERRORS). ON RETURN x/
[FROM THE TBDISPL SERVICE, DO THE FOLLOWING: */
/* */
/* - CHECK TO SEE IF ADDITIONAL ROWS ARE NEEDED TO */
/ SATISFY A SCROLL REQUEST. */
/* - IF ADDITIONAL ROWS ARE NEEDED, READ THE APPROPRIATE %/
/ NUMBER OF INVOICES FROM INVFILE AND ADD THEM TO */
[INVTABLE AGAIN USING THE TBADD MULT PARAMETER. */
[- IF NECESSARY, SET THE SYSTEM VARIABLE ZTDSCRP TO x/
/ THE CRP OF THE NEW TOP ROW. */
/% - FINALLY, ISSUE A TBDISPL SERVICE CALL (WITHOUT A */
[PANEL NAME) TO REDISPLAY INVTABLE. */
/* 9. PERFORM SOME FINAL CLEANUP BEFORE EXITING THE DIALOG: */
/* */
/* - ISSUE A TBEND SERVICE CALL TO CLOSE AND DELETE x/
[INVTABLE. */
/ - CLOSE INVFILE. */
/% - ISSUE A VDELETE SERVICE CALL TO DELETE ALL FUNCTION %/
/ POOL VARIABLES CREATED BY THE DIALOG. */
/** *k*k *k*k * /

Figure 19. PL/I Dialog Function Example Program (Part 1 of 7)

Chapter 3. Introduction to Writing Dialogs

51

Display Services

DECLARE
1 HEADER_RECORD,
3 YEAR CHAR(4),

3 NUM_RECS CHAR(6),
3 FILLER CHAR(70) ;

DECLARE
1 INVOICE_RECORD,
3 INV CHAR(6),
3 DATE CHAR(8),
3 PART CHAR(4),
3 QTY CHAR(3),
3 CUST CHAR(25),

3 FILLER CHAR(34),
INVOICE_FORMAT (5) CHAR(8)
INIT((5) (1)'CHAR '),
INVOICE_LENGTH (5) FIXED BIN(31,0)
INIT(6,8,4,3,25);
DECLARE
1 SCROLL_VARS,
3 ZSCROLLA CHAR(4),
ZTDRET CHAR(8),
ZTDSCRP FIXED BIN(31,0),
ZTDAMT FIXED BIN(31,0),
ZTDSIZE FIXED BIN(31,0),
ZTDLROWS FIXED BIN(31,0),
3 ZTDADD CHAR(3),
SCROLL_FORMAT (7) CHAR(8)
INIT((2) (1)'CHAR ',
(4) (1)'FIXED ',
'CHAR '),
SCROLL_LENGTH (7) FIXED BIN(31,0)
INIT(4,8,4,4,4,4,3);

W wwww

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

HEADER RECORD FIELDS
YEAR OF INVOICES
NUMBER OF INVOICES
*% RESERVED **

INVOICE RECORD FIELDS
INVOICE NUMBER
TRANSACTION DATE
PART NUMBER
QUANTITY
CUSTOMER NAME
*% RESERVED **

FORMAT ARRAY FOR

INVOICE_RECORD VDEF

LENGTH ARRAY FOR

INVOICE_RECORD VDEF

TBDISPL SCROLL FIELDS
SCROLL AMOUNT
RETURN ON EOD
TOP ROW CRP
#ROWS TO ADD

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

SCROLLABLE AREA SIZE=*/
#ROWS IN LOGICAL TBL*/

NEED TO ADD ROWS?
FORMAT ARRAY FOR
SCROLL_VARS VDEFINE

LENGTH ARRAY FOR
SCROLL_VARS VDEFINE

Figure 19. PL/I Dialog Function Example Program (Part 2 of 7)

52 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

*/
*/
*/
*/
*/
*/
*/
*/

Display Services

DECLARE /* */
I FIXED BIN(31,0), /* WORK INDEX */
L4 FIXED BIN(31,0), /* VDEFINE LENGTH PARM =/
TBDISPL_RC FIXED BIN(31,0), /* TBDISPL RETURN CODE x/
BOTTOM FIXED BIN(31,0), /* CRP OF BOTTOM ROW */
NEW_BOTTOM FIXED BIN(31,0), /* CRP OF NEW BOTTOM ROW */
REQUESTED_TOP FIXED BIN(31,0), /* TOP ROW REQUESTED BY x/

/* END USER SCROLL */
ADD_NUMBER FIXED BIN(31,0); /* #ROWS TO ADD */
/* */

DECLARE /* */
MIN BUILTIN, /* PL/I BUILTIN */
PLIRETV BUILTIN, /* FUNCTIONS */
ISPLINK EXTERNAL ENTRY /* ISPF SERVICE */

OPTIONS(ASM INTER RETCODE); /* INTERFACE */
/* */

DECLARE /* */

INVFILE FILE INPUT RECORD SEQUENTIAL /* INVOICE FILE */
ENV(FB BLKSIZE(6160) RECSIZE(80)); /= */

/* */
/***/
/* */

/* ISSUE VDEFINE SERVICE CALLS TO DEFINE THE TABLE VARIABLES, */
/* SCROLL SYSTEM VARIABLES, AND OTHER MISCELLANEOUS FIELDS TO */

/* ISPF. */
/* */
/***/
/* */

CALL ISPLINK('VDEFINE ', /* DEFINE TABLE VARS */
"(INV DATE PART QTY CUST)', /« */
INVOICE_RECORD, /* */
INVOICE_FORMAT, /* */
INVOICE_LENGTH, /* */

'LIST ') /* */

/* */

CALL ISPLINK('VDEFINE ', /* DEFINE SCROLL VARS =/
'(ZSCROLLA ZTDRET ZTDSCRP ZTDAMT ZTDSIZE ZTDLROWS ZTDADD)',
SCROLL_VARS, /* */
SCROLL_FORMAT, /* */
SCROLL_LENGTH, /* */

'LIST ') /* */

L4 = 4; /* */
CALL ISPLINK('VDEFINE ', /* DEFINE BOTTOM ROW CRP */
' (BOTTOM) ', /* */

BOTTOM, /* */

'FIXED ', [*/

L4); /* */

/% */

Figure 19. PL/I Dialog Function Example Program (Part 3 of 7)

Chapter 3. Introduction to Writing Dialogs

53

Display Services

CALL ISPLINK('VDEFINE ',

/* DEFINE PANEL VAR YEAR =*/

"(YEAR) ', /* */

YEAR, /* */

'CHAR ', /* */

L4); /* */

/* */
/***/
/* */
/* ISSUE TBCREATE SERVICE CALL TO CREATE TEMPORARY TABLE */
/* INVTABLE. MAKE EACH OF THE TABLE VARIABLES NAME VARIABLES. */
/* */
/***/
/* */

CALL ISPLINK('TBCREATE', /* */
"INVTABLE', /* */

v, /* */

"(INV DATE PART QTY CUST)'); /* */

/* */
/***/
/* */
/* OPEN FILE INVFILE AND READ THE HEADER RECORD. */
/* */
/**** """"""""""" **/
/* */

OPEN FILE(INVFILE);
READ FILE(INVFILE)

/* OPEN INVOICE FILE */
/* READ HEADER RECORD */

INTO(HEADER_RECORD) ; /* */
/* */
/***/
/* */
/* READ THE FIRST 60 RECORDS FROM INVILE, ADDING EACH TO THE */
/* TABLE. */
/* */
/***/
/* */

ADD_NUMBER = 60; /* */
DO I = 1 TO ADD_NUMBER; /* */
READ FILE(INVFILE) /* READ NEXT RECORD */
INTO(INVOICE_RECORD); /* */
CALL ISPLINK('TBADD ', /* ADD INVOICE TO TABLE =/
"INVTABLE', /* */

b, /* */

Y, /* */

ADD_NUMBER) ; /* */

END; /* */

Figure 19. PL/I Dialog Function Example Program (Part 4 of 7)

54 7/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Display Services

/***/

/*
/*
/*
/*
/*

/*
/*
/*
/*

*
/
SKIP BACK TO THE TABLE TOP, INITIALIZE THE ZTDRET AND */
ZTDLROWS SYSTEM VARIABLES, AND ISSUE A TBDISPL SERVICE CALL */

TO DISPLAY THE TABLE. */

*

/
/***/
/* */

CALL ISPLINK('TBTOP ', /* SKIP TO TABLE TOP */
"INVTABLE'); /* */

ZTDRET = 'DOWN ' /* RETURN ON BOTTOM OF */
/* DATA */

ZTDLROWS = NUM_RECS; /* SET LOGICAL #ROWS */
CALL ISPLINK('TBDISPL ', /* PUT UP TABLE */
"INVTABLE', /* */

"INVPANEL'); /* */

TBDISPL RC = PLIRETV(); /* */
/* */
/***/
*

/

LOOP WHILE USER HAS NOT ISSUED THE END COMMAND, CHECK TO */

SEE IF ADDITIONAL ROWS ARE NEEDED TO SATISFY SCROLL, ADD ROWS */

IF APPROPRIATE, AND THEN REDISPLAY TABLE. */

*

/

/*

/***/

DO WHILE(TBDISPL RC < 8);

IF ZTDADD = 'YES' THEN

DO;

CALL ISPLINK('VGET ',

' (ZSCROLLA) ',

'SHARED ');
IF ZSCROLLA = 'MAX' THEN
ZTDAMT = 999999;
ELSE;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/
LOOP WHILE NOT END */
NEED TO ADD ROWS? */

*/
*/
CHECK TO SEE IF MAX =/
SCROLL */
*/
IF SO, ADD ALL */

REMAINING INVOICES =/
ELSE, ADD ZTDAMT ROWS*/
*/

Figure 19. PL/I Dialog Function Example Program (Part 5 of 7)

Chapter 3. Introduction to Writing Dialogs

55

Display Services

CALL ISPLINK('TBBOTTOM', /* SKIP TO TABLE BOTTOM */
"INVTABLE', /* TO ADD ROWS */

Y, /* */

1 I, /* */

Y, /* */

'BOTTOM '); /* SAVE CRP OF BOTTOM */

/* */

ADD_NUMBER = MIN(ZTDAMT, /* ADD ZTDAMT ROWS OR */
ZTDLROWS-BOTTOM); /* UNTIL INVFILE EOF */

DO I = 1 TO ADD_NUMBER; /* */
/* */

READ FILE(INVFILE) /* READ RECORD */
INTO(INVOICE_RECORD); /* */

/* */

CALL ISPLINK('TBADD ', /* ADD IT TO TABLE */
'INVTABLE', /* */

Y, /* */

1 I’ /* */

ADD_NUMBER) ; /* */

END; /% %/
IF ZSCROLLA -= 'MAX' THEN /% IF NOT MAX SCROLL, */
IF ZTDSCRP = © THEN /* MAY NEED TO SET */
DO; /* ZTDSCRP */

/* */

NEW_BOTTOM = BOTTOM + /* CALCULATE NEW BOTTOM */
ADD_NUMBER; /* */
REQUESTED_TOP = BOTTOM + /* CALCULATE TOP ROW */
ZTDAMT - ZTDSIZE + 1; /* REQUESTED BY SCROLL */

/* */

IF NEW_BOTTOM < /* IF HIT EOF BEFORE */
REQUESTED_TOP THEN /* REACHING TOP ROW */

/* REQUESTED, DISPLAY =*/

ZTDSCRP = NEW_BOTTOM + 1; /% ONLY BOTTOM OF */

/* DATA MARKER x/

ELSE /* ELSE */

ZTDSCRP = REQUESTED TOP; /+ ADDED REQUESTED */

/* TOP, SET ZTDSCRP */

/* TO NEW TOP ROW */

END; /* «/

ELSE; /* NO NEED TO SET x/

ELSE; /* ZTDSCRP x/

/* */

END; /* x/
ELSE; /* DON'T NEED TO ADD ROWS*/
/* */

CALL ISPLINK('TBDISPL ', /* REDISPLAY TABLE */
"INVTABLE'); /* x/

TBDISPL_RC = PLIRETV(); /% */
END; /% «/
/* */

Figure 19. PL/I Dialog Function Example Program (Part 6 of 7)

56 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Display Services

/***/

/% %/
/* PERFORM FINAL CLEANUP. */
/% %/
/***/
/% %/

CALL ISPLINK('TBEND ', /* CLOSE AND DELETE */
'INVTABLE'); /* TABLE x/

CLOSE FILE(INVFILE); /* CLOSE INVOICE FILE «/
CALL ISPLINK('VDELETE ', /* DELETE FUNCTION POOL +/
- OF /* VARIABLES */

/* */

RETURN (0); /* */
END INVOICE; /* x/

Figure 19. PL/I Dialog Function Example Program (Part 7 of 7)

Now, assume that a user is running the invoice dialog on a terminal with 24 lines.
The initial display of the table is shown in

R 1986 TRANSACTIONS ------ ROW 1 OF 10000)
Command ====> Scroll ===> PAGE
Invoice Transaction Part Quantity Customer

Number Date Number

0000001 01/06/86 7071 100 Acme Parts

0000002 01/06/86 0015 15 Parts City

0000003 01/07/86 1023 340 Cary Auto Center
0000004 01/08/86 0231 1 Parts Unlimited
0000005 01/08/86 3423 805 Bosworth's Parts
0000006 01/08/86 2341 165 Acme Parts

0000007 01/08/86 7653 20 Acme Parts

0000008 01/08/86 3353 100 Bosworth's Parts
0000009 01/08/86 0003 325 Bosworth's Parts
0000010 01/08/86 3322 1 Bosworth's Parts
0000011 01/10/86 2344 23 Parts Unlimited
0000012 01/10/86 4333 55 Cary Auto Center
0000013 01/10/86 3079 65 Parts Company of NC
0000014 01/10/86 4763 340 Cary Auto Center
0000015 01/10/86 0956 70 Cary Auto Center
0000016 01/10/86 4536 52 ABC Parts

0000017 01/10/86 0973 330 ABC Parts)

Figure 20. Initial Display for Dynamic Table Expansion Example

Notice that even though the table actually contains only 60 rows, the top row
displayed indicator shows “ROW 1 OF 10000”. This was accomplished by setting
the ZTDLROWS variable in the function pool to a value of 10 000. TBDISPL will
pick up this value and use it when ZTDRET has been properly set.

Assume that the user enters the command “DOWN 50” on the command line. This
should result in rows 51-67 being displayed. Remember though that only rows
1-60 are currently in the table. Because there are not enough rows in the table to
fill the screen, control will return to function INVOICE. Upon return from
TBDISPL, the system variables used by the dialog have the following values:

ZSCROLLA 0050
ZTDADD YES
ZTDSCRP 51

Chapter 3. Introduction to Writing Dialogs 57

Display Services

ZTDAMT 7
ZTDSIZE 17

ZTDAMT contains the number of rows that must be added to satisfy the scroll
request and fill a full screen. ZTDSCRP has the CRP of the row that will be at the
top of the screen after the scroll. Because it is non-zero, function INVOICE does
not need to set it. In fact, all that the function has to do is skip to the table bottom,
read and add the next 7 invoices to the table, and then issue a TBDISPL service
request to redisplay the table. When the table is displayed again, it appears as
shown in ﬁ

R 1986 TRANSACTIONS ------ ROW 51 OF 10000)
Command ====> Scroll ===> PAGE
Invoice Transaction Part Quantity Customer
Number Date Number
0000051 01/15/86 7536 6 Parts Unlimited
0000052 01/15/86 0546 54 ABC Parts
0000053 01/15/86 3349 65 Parts Company of NC
0000054 01/15/86 4234 340 Cary Auto Center
0000055 01/15/86 0342 70 Cary Auto Center
0000056 01/18/86 4544 52 ABC Parts
0000057 01/19/86 0763 330 Cary Auto Parts
0000058 01/19/86 0841 540 Bosworth's Parts
0000059 01/19/86 0445 560 ABC Parts
0000060 01/19/86 4542 450 ACME Parts
0000061 01/25/86 7071 100 Acme Parts
0000062 01/25/86 0015 15 Parts City
0000063 02/27/86 1023 340 Cary Auto Center
0000064 02/04/86 0231 1 Parts Unlimited
0000065 02/04/86 3423 805 Bosworth's Parts
0000066 02/04/86 2341 165 Acme Parts
0000067 02/04/86 7653 20 Acme Parts)

Figure 21. Second Display for Dynamic Table Expansion Example

Now assume that the user issues:
DOWN 5000

This should result in rows 5051-5067 being displayed. As before, there are not
enough rows in the table to handle the scroll request, so control returns to function
INVOICE with the following information in the system variables:

ZSCROLLA 5000
ZTDADD YES
ZTDSCRP 0
ZTDAMT 5000
ZTDSIZE 17

Notice that this time ZTDSCRP has a value of 0. This indicates that the new top
row, as requested by the user scroll, is not in the physical table. After adding the
5000 rows indicated by the ZTDAMT system variable, function INVOICE must set
ZTDSCRP to the CRP of the row that should be displayed at the top after the scroll
(row 5051). This is accomplished in the dialog by adding ZTDAMT to the number
of rows in the current table, and then subtracting out the size of the scrollable area

58 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Display Services
(ZTDSIZE). When the table is redisplayed, it appears as shown in [Figure 23 .

R 1986 TRANSACTIONS ------ ROW 5051 OF 10000)
Command ====> Scroll ===> PAGE
Invoice Transaction Part Quantity Customer
Number Date Number
0005051 07/12/86 7326 436 Parts Unlimited
0005052 07/12/86 0516 54 ABC Parts
0005053 07/21/86 3549 5 Parts Company of NC
0005054 07/24/86 4243 350 Cary Auto Center
0005055 07/25/86 0342 540 Cary Auto Center
0005056 07/31/86 4544 444 ABC Parts
0005057 07/11/86 0653 30 Cary Auto Parts
0005058 08/29/86 0821 450 Bosworth's Parts
0005059 08/01/86 6445 460 ABC Parts
0005060 08/01/86 4942 850 ACME Parts
0005061 08/01/86 7021 180 Acme Parts
0005062 08/01/86 6026 945 Parts City
0005063 08/07/86 1523 30 Cary Auto Center
0005064 08/07/86 0531 451 Parts Unlimited
0000065 08/07/86 3263 455 Bosworth's Parts
0005066 08/07/86 2771 5 Acme Parts

\\0005067 08/07/86 7453 576 Acme Parts)

Figure 22. Third Display for Dynamic Table Expansion Example

Finally, assume that the user again issues:
DOWN 5000

A scroll of 5000 would display rows 10051-10067, if there were that many invoices

in the file. However, because there are only 10 000 invoices, function INVOICE can
add only rows 5068-10000 to the table and then redisplay the table. On return from
TBDISPL, the system variables again contain the following information.

ZSCROLLA 5000
ZTDADD YES
ZTDSCRP 0
ZTDAMT 5000
ZTDSIZE 17

After adding all of the invoices to the table (end of file is reached), the dialog must
set system variable ZTDSCRP. Because the scroll amount has caused the user to
scroll past the end of data, the dialog sets ZTDSCRP to a value that will cause only
the bottom of data marker to be displayed. That is, ZTDSCRP is set to a value
greater than the number of rows in the table. When the table is redisplayed it
appears as shown in [Ei

Chapter 3. Introduction to Writing Dialogs 59

Display Services

R 1986 TRANSACTIONS ----=---==-=ccmmemmoo)
Command ====> Scroll ===> PAGE
Invoice Transaction Part Quantity Customer
Number Date Number

BOTTOM OF DATA

Figure 23. Fourth Display for Dynamic Table Expansion Example

One case not illustrated above is that of the user issuing a DOWN MAX scroll
request. In this case ZTDAMT and ZTDSCRP would each have a value of 0 when
control returns to the dialog. ZSCROLLA would have a value of MAX. The dialog
would add all remaining invoices to the table and then redisplay the table. It is not
necessary in a MAX scroll case to set ZTDSCRP before redisplaying the table
because ISPF automatically positions the table so that a full screen plus the bottom
of data marker are displayed.

In this example the program has been written so that control continues to return to
the dialog after all of the invoice file records have been added to the table. To
further improve performance, it may be desirable for the dialog to disable the
return after the end of file has been reached. This can be done by setting the
ZTDRET function pool variable to some value other than DOWN, UP, or
VERTICAL, and then issuing a TBDISPL service request with the panel name
specified. Be aware that when a panel name is specified, ISPF clears any pending
scroll requests. So it is up to the dialog to position the table CRP to the appropriate
row to simulate the scroll. For example, assume that a DOWN MAX scroll request
has been issued and the dialog has added all remaining invoices to the table. The
dialog then sets ZTDRET to blank and prepares to issue the TBDISPL service
request, with a panel name, to display the table. To simulate the user scroll the
dialog issues a TBSKIP service request to position the CRP to the row that will
cause a full screen plus the bottom of data marker to be displayed. When the
TBDISPL request is subsequently issued, ISPF will position the table based on the
CRP, thereby simulating the scroll.

Using the Variable Services

Dialog variables are the main communication vehicle between the components of a
dialog and ISPF services. Program modules, command procedures, panels,
messages, tables, and skeletons can all refer to the same data through the use of
dialog variables. Variable services allow you to define and use dialog variables.

60 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

Some variable services require that ISPF search through the variable pools to locate
requested variables. ISPF searches the pools in the following order:

1. Function pool (defined variables)

2. Function pool (implicit variables)

3. Shared pool

4. Application profile pool (profile pool).

Searching Variable Pools

Dialog variables are organized into groups, or pools, according to the dialog and
application with which they are associated. An application is one or more dialogs,
each of which has been started using the same application ID.

A pool can be thought of as a list of variable names that enables ISPF to access the
associated values. When a DM service encounters a dialog variable name in a
panel, message, table, or skeleton, it searches these pools to access the dialog
variable’s value. The pools and the types of dialog variables that reside in them are
listed below:

Function pool
Contains variables accessible only by that function. A variable that resides
in the function pool of the function currently in control is called a function
variable.

Shared pool
Contains variables accessible only by dialogs belonging to the same
application. A variable that resides in the shared pool of the current
application is called a shared variable.

Profile pool
Contains variables that are automatically retained for the user from one
session to another. A variable that resides in the profile pool is called an
application profile variable or profile variable. Profile variables are
automatically available when an application begins and are automatically
saved when it ends.

The number of shared, function, and profile variables that can exist at any one
time depends on the amount of storage available.

SELECT Service and Variable Access

shows how the SELECT service can be used to pass control
within a dialog and illustrates the resulting pool structures. Menus A and B access
variables from the shared and profile pools, because menus are not part of any
function. The dialog invokes Function X, which uses the VPUT service to copy one
of the variables from its function pool into the shared pool. Next, the dialog
invokes Function Y, which uses the VGET service to copy a dialog variable from
the shared pool to its function pool. Then it uses the SELECT service for further
menu processing.

Eigure 24 on page 61 also shows how the SELECT service controls access to dialog
variable pools from both functions and menus.

When you define a variable as an input variable on a selection panel, the following
actions occur during processing of the menu:

e If the variable does not exist in either the shared pool or the profile pool, it is
created in the shared pool.

Chapter 3. Introduction to Writing Dialogs 61

Variable Services

62

* If the variable exists in the shared pool, it is accessed from, and is updated in,
the shared pool.

¢ If the variable exists in the profile pool and not in the shared pool, it is accessed

from, and is updated in, the profile pool.

ISPSTART PANEL (A)

4 A
Variable Data Flow
Menu B
SELECT PGM (X)
Variable
Data Flow Function
FUNCTION X Pool
for X
Application
VPUT Shared Profile
Pool Pool
SELECT PGM (Y)
v VGET
Variable
Data Flow Function
FUNCTION Y Pool
forY
SELECT PGM (C)
Menu C
B Variable Data Flow |
Menu D \ /

Figure 24. Control and Data Flow in a Dialog

Function Pools and Dialog Functions

Each function has its own unique pool of dialog variables. This is illustrated in

. These function pools are maintained by ISPF on behalf of each respective
function. A function uses these dialog variables to communicate with the various
DM services. A function pool’s variables can be accessed only by the function for
which the pool was created. To make these variables available to other functions,
you must use variable services to copy any variables to be shared into the shared
pool.

Dialog variables associated with one function can have the same names as dialog
variables associated with another function, but they reside in different function
pools, and therefore, are not the same variables.

When a new function begins, ISPF creates a function pool for it. Variables can then
be created in the function pool and accessed from it. When the function ends, its
function pool, along with any variables in it, is deleted.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

Command Procedures, Program Functions, and Function

Pools

When the function in control is a command procedure, the list of variable names
kept by the command language processor and the list of function variables kept by
ISPF is the same list. Thus, a variable created by the command procedure during
its execution is automatically a dialog variable. Likewise, the command procedure
can automatically access a dialog variable entered in the function pool by ISPE
However, ISPF variable names cannot exceed 8 characters.

Any CLIST or REXX variable such as SYSDATE and SYSTIME, which are
dynamically evaluated when referred to, can be used in a CLIST or REXX exec
running under ISPF; however, it cannot be used in panels, messages, skeletons, or
tables. For SYSDATE and SYSTIME, use ISPF system variables ZDATE and ZTIME,
respectively, which contain similar information.

ISPF makes available two other system variables, ZDATEF and ZDATEFD, to
support date representation in various national languages. ZDATEF contains the
date represented by the characters YY, MM, and DD plus delimiters. These
characters are never translated; however, they can be in any order. For example,
the date could be expressed MM/DD/YY, YY/MM/DD, and so on, depending on
how a date is expressed in a given national language. ZDATEFD contains the same
date format, translated into the session national language.

TSO global variables, in effect when ISPF is started, are not available to CLISTs
running under ISPF. These global variables are restored when ISPF terminates. Any
global variables put into effect from within ISPF are lost when ISPF terminates.

The following CLIST command procedure example illustrates that ISPF treats
command procedure variables as dialog variables.

Assume that the definition for panel XYZ contains two dialog variable input fields,
AAA and BBB. In the panel definition, they might appear as follows:

+ INITIAL VALUE %===>_AAA +
+ INCREMENT %===>_BBB +

where the underscore indicates the start of an input field, followed by the name of
the variable.

When the procedure:

SET &AAA =1
ISPEXEC DISPLAY PANEL(XYZ)
SET &CCC = &AAA + &BBB

is executed, variable AAA is set to the value 1. The procedure then invokes the
DISPLAY service to display panel XYZ. The value of AAA is 1 on the displayed
panel. ISPF creates the variable BBB in the function pool and displays it as a blank.

Now, in response to the panel display, you type 100 in the first field (AAA) and 20
in the second field (BBB). When you press Enter, the value 100 is automatically
stored in AAA and the value of 20 is automatically stored into BBB. The DISPLAY
service then returns control to the command procedure. When the next statement
executes, it creates variable CCC and sets it to 120, the sum of AAA and BBB.

When the function in control is a program, the associated function pool is not
shared with ISPF. This is because a program is compiled, not interpreted as

Chapter 3. Introduction to Writing Dialogs 63

Variable Services

command procedures are. ISPF maintains a list of variables that belong to the
function so that DM services can use dialog variables for communication of data.

ISPF makes two types of entries in the program function pool, defined and
implicit.

Use a Variable Service to Create or Delete Defined Variables

Use the VDEFINE service to create a defined dialog variable name in the function
pool and associate it with the corresponding program variable. This association
enables ISPF to directly access and modify that program variable. Otherwise, the
program’s variables are not available to ISPFE. Use the VDELETE service to end this
association and remove ISPF’s ability to access that program variable.

The following program coded in PL/I specifies that field PA of the program can be
accessed by ISPF by using a dialog variable named FA. Then, the DISPLAY service
is called to display panel XYZ.

DECLARE PA CHAR(8);

DECLARE LENGTHPA FIXED BIN(31) INIT(LENGTH(PA));

PA = 'OLD DATA';

CALL ISPLINK ('VDEFINE ', 'FA ', PA, 'CHAR ', LENGTHPA);

CALL ISPLINK ('DISPLAY ', 'XYZ ');

PA is declared as a program variable (character string, length 8). The program calls
the VDEFINE service to make PA accessible to ISPF through dialog variable FA. If
dialog variable FA is specified as an input field on panel XYZ, then “OLD DATA”
displays in field FA, and ISPF stores any data entered in that field into the
program variable PA.

Creating Implicit Variables

ISPF places implicit variables in the function pool when an ISPF service:

* Refers to a dialog variable name that is not found in the standard search
reference

* Must store data in a dialog variable that does not already exist in the function
pool.

Let’s illustrate how ISPF creates an implicit variable. Assume that panel XYZ, in
the preceding example, allows the user to enter a second value and that this value
is to be stored in dialog variable IA. This is the first reference to IA; therefore, it
does not yet exist in the function pool. Because variable IA does not exist when it
is referred to, ISPF creates it in the function pool. ISPF then stores into IA the value
entered on the panel. Thus, IA is an implicit dialog variable.

Any DM service invoked by a program function can access an implicit variable
directly by referencing the variable name. However, implicit variables cannot be
accessed directly from a program function. Programs access implicit variables only
through the use of the VCOPY and VREPLACE services.

When you are using APL2, variables in the current APL2 workspace that follow
APL2 and ISPF naming rules become function pool variables. ISPF treats these as
implicit variables. The VDEFINE service is not used with APL2 dialogs.

Naming Defined and Implicit Variables

A defined variable and an implicit variable can have the same name. This occurs
when, using the VDEFINE service, a defined variable is created that uses the same

64 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

name as an existing implicit variable. When the same name exists in both the
defined and the implicit areas of a function pool, only the defined entry can be
accessed. You can make the implicit entry accessible by using the VDELETE service
to remove any defined entries for that variable name made through the VDEFINE
service. The implicit entries are not affected.

You can define a given dialog variable name many times within a given function.
Each definition can associate a different program variable with the dialog variable
name. This is referred to as stacking. Only the most recent definition of that dialog
variable is accessible. A previous definition of that variable can be made accessible
by using the VDELETE service to delete the more recent definitions of that name.

For example, the main routine of a program can define a dialog variable to be
associated with one program variable. A subroutine is called and can define the
same dialog variable name to be associated with a different program variable. Any
&DMacro services invoked after the second VDEFINE would have access to only
the subroutine’s program variable. The subroutine would use the VDELETE service
to delete that dialog variable before returning, thereby uncovering the earlier
definition set up in the main routine. To avoid a possible program error, each
VDEFINE processed within a function for a given dialog variable name should
have a VDELETE using the same name or an asterisk (*) as the operand. When an
asterisk is used as the operand, the VDELETE service removes all dialog variable
names previously defined by the program module from the function pool.

The VRESET service allows a program to remove its function pool variables as
though VDELETEs had been done. Any implicit variables are also deleted.

Sharing Variables among Dialogs

The shared pool allows dialog functions and selection panels to share access to
dialog variables.

The SELECT service creates shared pools when it processes the ISPSTART or ISPF
command, and when you specify the NEWAPPL or NEWPOOL keywords with the
SELECT service. When SELECT returns, it deletes the shared pool and reinstates
any previous shared pool.

A function can copy dialog variables from its function pool to the shared pool by
using the VPUT service. In addition, another function can directly copy these
variables to its function pool by means of the VGET service. Because a panel
displayed by the SELECT service does not belong to any function, any dialog
variables used in the panel are read from and stored into the shared or profile
pool.

Saving Variables across ISPF Sessions

Like the shared pool, the application profile pool contains variables that are
accessible to dialogs within an application. But, unlike the shared pool, the profile
variables are saved across sessions.

When a new application is started, it has access to a profile pool. If an application
is restarted by split screen, for example, both calls of the application access exactly
the same profile pool. The profile pool is maintained as an ISPF table whose name
is xxxxPROEF, where xxxx is the application ID. If the application is already active,
then the current profile pool is used.

Chapter 3. Introduction to Writing Dialogs 65

Variable Services

When accessing an application profile pool that is not currently active, ISPF first
searches the user’s profile files for a profile named xxxxPROF. ISPF finds the
profile if the user previously ran the application, and thus, had a copy of the
profile pool.

If ISPF cannot find the profile, it searches the table input file. The application
developer can provide a profile pool with the table files. A profile pool contains
variable names and values initialized for the application.

If ISPF cannot find the member in either the user’s profile pool or table input
library, it initializes the application profile pool with the contents of the default
profile pool, ISPPROF, which is read from the table input library. If the dialog
manager application ID “ISP” is active, the currently active copy of ISPPROF is
used as the default, rather than reading ISPPROF from ISPTLIB. ISPPROF is
distributed with ISPF. It contains a set of default Function key values. An
installation can modify this table to change these settings or to include other
variables that will be copied to initialize new profile pools.

Upon completion of the application, ISPF saves the contents of the application
profile pool, under the name xxxxPROF, in the user’s profile library. ISPF deletes
the profile pool from storage when the last call of the application terminates.

You must use the VPUT service to enter variables in the profile pool. Functions can
copy variables from the profile pool into function pools by using the VGET
variable services. Selection panels automatically update existing profile variables.

Removing Variables from the Shared or Profile Pool

As mentioned in an earlier topic, you can use the VDELETE or VRESET service to
remove variables only from the function pool. However, if you wish to do some
housekeeping in the other variable pools, you can use the VERASE service. The
VERASE service allows you to remove variable names and values from the shared
pool, the profile pool, or both. You can specify on the VERASE service request a
list of one or more variable names to be removed from the shared pools or both.
For example:

ISPEXEC VERASE (AGE ADDRESS SOCSEC) PROFILE

might be used to remove variable values for age, address, and social security
number from the profile pool.

For detailed information about VERASE and other services, refer to the ISPF
Services Guide

Read-Only Profile Pool Extension Variables

ISPF provides for a read-only extension of the application profile variable pool.
This allows installations to maintain better control over application default profile
variables. It also results in conservation of disk storage because a copy of these
variables need not exist in the application profile of every application user.

To use the read-only extension, you do two things:

1. First you must define the read-only extension. The read-only extension is
actually a table, which you can create by using the ISPF TBCREATE table
service. You add variables to this table as extension variables; that is, variables
not specified when the table is created. This is illustrated in the CLIST
procedure below, using the SAVE keyword on the TBADD table service.

66 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

You need to create the extension table only once. After the table is saved, you
must define it to ISPF by using an ALLOCATE command or a LIBDEF service
request.

2. You then use DM variable services to put the name of the read-only extension
table into system variable ZPROFAPP in the profile variable pool.

An example of a CLIST to create a read-only extension table named ROTABLE is
shown in w The table is to contain variables RDONLY1, RDONLY2, and
RDONLY3 set to values of LKHFC, FLIST, and SPOOLFUL, respectively. After the
procedure closes the table, it sets system variable ZPROFAPP to the table name,
ROTABLE. The procedure then puts ZPROFAPP into the profile variable pool.

/* Example of creating a read-only extension table */

SET ROV1 = LKHFC
SET ROVZ = FLIST
SET ROV3 = SPOOLFUL

SET ROVLIST = &STR(ROV1 ROV2 ROV3)
ISPEXEC TBCREATE ROTABLE
ISPEXEC TBADD ROTABLE SAVE(&ROVLIST)
ISPEXEC TBCLOSE ROTABLE
SET &RC = &LASTCC
IF &RC = O THEN -
DO
/* Put extension table name into system variable ZPROFAPP. =/
SET ZPROFAPP = ROTABLE
ISPEXEC VPUT ZPROFAPP PROFILE
END

Figure 25. CLIST to Create a Read-Only Extension Table

When a new application that uses the NEWAPPL keyword on the SELECT service
is specified, ISPF interrogates variable ZPROFAPP in the new application’s profile
pool. If the variable value is not null, it is assumed to be the name of the profile
extension table. ISPF searches the table input files for a table with the name
specified by ZPROFAPP. The set of variables in this table becomes the read-only
extension for the profile pool of the application just selected.

Although variable services are not effective for updating the read-only extension,
you can create or update the table used as the extension by using DM table
services. Updating the extension may be done only when the application is not
active, because the table is open in nowrite mode while the application is active.

If a variable name is referred to and exists in both the profile pool and the
read-only extension table, ISPF uses the variable from the user’s profile pool. In
other words, the search order is: first the profile pool, and then the read-only
extension.

If a VPUT PROFILE is issued for a variable in the read-only extension, the update
for that variable is made to the user area of the profile pool, not to the read-only
extension. Only the profile pool variable update is saved and accessed, not the
extension variable value.

Variables Owned by ISPF

A second level of profile pool, the system profile pool (ISPSPROF), is always
active. The dialog manager owns the dialog variables within the system profile
pool, and the variables cannot be modified by an application. They can be read,
however, because the system profile pool is included in the standard search

Chapter 3. Introduction to Writing Dialogs 67

Variable Services

sequence after the profile pool. All system variable names begin with “Z”, such as
“ZTERM”, and supply information such as terminal type and list and log defaults.

If a system profile pool variable is used on a selection panel, a corresponding field
is created in the profile pool (ISPPROF). Subsequently, when that variable is
referred to by the dialog, the profile pool value is used rather than the system
profile pool value. The dialog can use the VERASE service to delete variables from
the profile (ISPPROF) pool.

Variable Formats

Information entered on a panel is in character string format. All dialog variables
remain in character string format when stored:

* As implicit variables in a function pool

* In the shared pool

* In the profile pool

* In ISPF tables.

Defined variables, however, can be translated to a fixed binary, bit, hexadecimal,
float, packed, or binary string, or to a user-defined format when stored internally
in a program module. The translation occurs automatically when the variable is
stored by an ISPF service. A translation back to character string format occurs
automatically when the variable is accessed.

The VMASK service is used to validate input into a VDEFINEd dialog variable.
Refer to the ISPF Services Guide for more information.

When a defined variable is stored, either of two errors can occur:

Truncation
If the current length of the variable is greater than the defined length
within the module, the remaining data is lost.

Translation
If the variable is defined as something other than a character string, and
the external representation has invalid characters, the contents of the
defined variable are lost.

In either case, the ISPF service issues a return code of 16.

System Variables Communicate between Dialogs and ISPF

System variables are used to communicate special information between the dialog
and the dialog manager (ISPF). System variable names are reserved for use by the
system. They begin with the letter “Z”. Therefore, avoid names that begin with “Z”
when choosing dialog variable names.

The types of system variables are input, output, non-modifiable, and input-output.
Their type depends on their usage.

To access and update system variables, use variable services according to which
pool the variables are in. System variables in the function pool can be accessed and
updated directly from a command procedure. Those in the shared or profile pools
can be accessed by using the VGET service, and updated by using the VPUT
service.

68 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Variable Services

A program function can access and update system variables in the function pool
using the VDEFINE service. Dialog variables can be accessed by using the VCOPY
service and updated by using the VREPLACE service.

The system variables in the shared or profile pools can be accessed by using the
VCOPY service. They can be updated by first updating the variable in the function
pool by using the VDEFINE or VREPLACE service and then moving that value to
the shared or profile pool by using the VPUT service.

Using VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and
VREPLACE

For functions coded in a programming language other than APL2, you can manage
the availability to ISPF of the internal program variables that are to be used as
dialog variables through the ISPF VDEFINE, VDELETE, and VRESET services.

Variables used in a program function are not automatically put into that function’s
variable pool. Therefore, those variables are not initially available to ISPF for
processing function requests. A function can use the VDEFINE service to make
function variable names available to ISPF through the function pool.

The VDELETE and VRESET services are used to cancel the effect of using
VDEFINE service requests. VDELETE can be used to delete access by ISPF to
selected defined variables by removing them from the function pool. VRESET
removes all defined and implicit variables from the function pool.

A program function can obtain a copy of dialog variables by using the VCOPY
service. The service request can specify that either the variable data address or the
data itself be returned.

The VMAGSK service is used to validate the data of a variable defined with the
VDEFINE service. VMASK associates a specified user or predefined mask with a
variable previously defined with VDEFINE. The VEDIT statement must be used to
indicate VMASKed variables on a panel.

A program function can update the contents of dialog-defined or implicit variables
in the function pool by using the VREPLACE service. The names of the variables
to be updated and the new contents are specified with the VREPLACE service
request.

The VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and VREPLACE variable
services are not used with functions coded as procedures. For a function coded as
a CLIST or APL2 procedure, variables used in the procedure are automatically
treated as dialog variables. No special action is required to define them to ISPE
Any trailing blanks in CLIST variables are not truncated; they remain as part of the
variables.

Using the VGET, VPUT, and VERASE Services

The VGET, VPUT, and VERASE services can be used by both program and
procedure functions. Functions use the VGET and VPUT services to control
movement of variables between function pools and shared or profile pools.

Each function has its own function variable pool. The variables in a given

function’s pool are not available to other functions, and vice versa. To overcome
this, a function can use the VGET service to copy into its function pool variables
from the shared or profile pools. The function can make variables in its function

Chapter 3. Introduction to Writing Dialogs 69

Variable Services

pool available to other functions in the same application by copying them to the
shared or profile pool by using the VPUT service.

You can use the VERASE service to remove variable names and values from the

shared and/or profile pool. The VDELETE and VRESET services are available for
removing function pool variables.

Summary of Variable Services

The variable services are:

All Functions

VERASE Remove variables from shared pool and/or profile pool
VGET Retrieve variables from shared pool or profile pool
VPUT Update variables in shared pool or profile pool

Program Functions Only

VCOPY Copy data from a dialog variable to the program

VDEFINE Define function program variables to ISPF

VDELETE Remove definition of function variables

VMASK Associate a mask with a dialog variable

VREPLACE Update dialog variable with program data
specified in the service request

VRESET Reset function variables

Using the Table Services

Table services let you use and maintain sets of dialog variables. A table is a
two-dimensional array of information in which each column corresponds to a
dialog variable, and each row contains a set of values for those variables.

Contents for a table are shown in [able 3 on page 75. In that example, the variables
that define the columns are as follows:

EMPSER Employee Serial Number
LNAME Last Name

FNAME First Name

I Middle Initial

PHA Home Phone: Area Code
PHNUM Home Phone: Local Number

Where Tables Reside

A table can be either temporary or permanent. A temporary table exists only in
virtual storage. It cannot be written to disk storage.

Permanent tables are maintained in one or more table libraries. A permanent table,
while created in virtual storage, can be saved on direct access storage. It can be
opened for update or for read-only access, at which time the entire table is read
into virtual storage. When a table is being updated in virtual storage, the copy of
the table on direct access storage cannot be accessed until the update is complete.
In the MVS/XA environment, some table services data areas reside above the
16-megabyte line when that storage is available, and TSO/E Version 2 Release 1 (or
later) is installed.

70 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Table Services

For both temporary and permanent tables, rows are accessed and updated from
the in-storage copy. A permanent table that has been accessed as read-only can be
modified in virtual storage, but cannot be written back to disk storage.

When a permanent table is opened for processing, it is read from a table input
library. A table to be saved can be written to a table output library that is different
from the input library. The input and output libraries should be the same if the
updated version of the table is to be reopened for further processing by the same
dialog.

Accessing Data

You specify the variable names that define table columns when the table is created.
Specify each variable as either a KEY field or a NAME (non-key) field. You can
specify one or more columns (variable names) as keys for accessing the table. For
the table shown in Mable 3 on page 73, EMPSER might be defined as the key
variable. Or EMPSER and LNAME might both be defined as keys, in which case, a
row would be found only if EMPSER and LNAME both match the current values
of those variables. A table can also be accessed by one or more “argument”
variables that need not be key variables. You can define the variables that
constitute the search argument dynamically by using the TBSARG and TBSCAN
services.

In addition, a table can be accessed by use of the current row pointer (CRP). The
table can be scanned by moving the CRP forward or backward. A row can be
retrieved each time the CRP is moved. When a table is opened, the CRP is
automatically positioned at TOP, ahead of the first row. Table services, such as
TBTOP, TBBOTTOM, and TBSKIP are available for positioning the CRP.

When a row is retrieved from a table, the contents of the row are stored in the
corresponding dialog variables. When a row is updated or added, the contents of
the dialog variables are saved in that row.

When a row is stored, a list of “extension” variables can be specified by name.
These extension variables, and their values, are added to the row. Thus, variables
that were not specified when the table was created can be stored in the row. A list
of extension variable names for a row can be obtained when the row is read. If the
list of extension variables is not respecified when the row is rewritten, the
extensions are deleted.

ISPF Table Services treat blank data and NULL (zero-length) data as equal. For
example, the following VDEFINES are executed:

“ISPLINK('VDEFINE ','(V1)',VALL, 'CHAR ',L8,' NOBSCAN ')"
"ISPLINK('VDEFINE ','(V2)',VAL2, 'CHAR ',L8)"

If L8 = 8, VAL1 = "ABCD " and VAL2 = "ABCD ’, V1 will have a length of 8 and a
value of "ABCD ’, and V2 will have a length of 4 and a value of "ABCD’. To ISPEF,
V1 and V2 will be equal because when ISPF compares two values, it pads the
shorter value with blanks so that the lengths are equal, and then it does the
compare.

If the same VDEFINES are done with VAL1 =’ " and VAL2 =" ’, V1 will have a
length of 8 and a value of ” ’ (8 blanks), and V2 will have a length of 0 (NULL
value). To ISPF, V1 is EQUAL to V2, since ISPF will pad V2 with 8 blanks before
doing the compare to V1.

Chapter 3. Introduction to Writing Dialogs 71

Table Services

Services That Affect an Entire Table

The following services operate on an entire table:
TBCLOSE Closes a table and saves a permanent copy if the table was opened
TBCREATE Creates a new table and opens it for processing

TBEND Closes a table without saving

TBERASE Deletes a permanent table from the table output file
TBOPEN Opens an existing permanent table for processing
TBQUERY Obtains information about a table

TBSAVE Saves a permanent copy of a table without closing
TBSORT Sorts a table

TBSTATS Provides access to statistics for a table

Temporary tables are created by the TBCREATE service (NOWRITE mode) and
deleted by either the TBEND or TBCLOSE service. A new permanent table is
created in virtual storage by the TBCREATE service (write mode). The table does
not become permanent until it is stored on direct access storage by either the
TBSAVE or TBCLOSE service.

An existing permanent table is opened and read into virtual storage by the
TBOPEN service. If the table is to be updated (WRITE mode), the new copy is
saved by either the TBSAVE or TBCLOSE service. If it is not to be updated
(NOWRITE mode), the virtual storage copy is deleted by either the TBEND or
TBCLOSE service.

Services That Affect Table Rows

The following services operate on a row of the table:

TBADD Adds a new row to the table.

TBBOTTOM Sets CRP to the last row and retrieves the row.
TBDELETE Deletes a row from the table.

TBEXIST Tests for the existence of a row (by key).

TBGET Retrieves a row from the table.

TBMOD Updates an existing row in the table. Otherwise, adds a new row
to the table.

TBPUT Updates a row in the table if it exists and if the keys match.

TBSARG Establishes a search argument for use with TBSCAN. Can also be
used in conjunction with TBDISPL.

TBSCAN Searches a table for a row that matches a list of “argument”
variables, and retrieves the row.

TBSKIP Moves the CRP forward or back by a specified number of rows,
and then retrieves the row at which the CRP is positioned.

TBTOP Sets CRP to TOP, ahead of the first row.

TBVCLEAR Sets to null dialog variables that correspond to variables in the
table.

Protecting Table Resources

Table services provide a resource protection mechanism designed to prevent
concurrent updating of the same table by more than one user. This protection
mechanism assumes that for all users having update access to a given table, the
same library name is used in the first statement defining the table for the table
library. This can be ISPTLIB or another specified library. Other libraries can be
specified by the use of the LIBRARY keyword or the LIBDEF service.

When a table is opened or created in write mode, an exclusive enqueue is
requested for a resource name consisting of the first library name defined in the

72 2/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Table Services

ISPTLIB, or the first library name defined in the LIBRARY DD or the top file
specified in the LIBDEF Service stack, concatenated with the table name. The
TBOPEN or TBCREATE service fails with a return code of 12 if this enqueue or
lock is unsuccessful. A successful enqueue or lock stays in effect until the
completion of a TBEND or TBCLOSE service for the table. If the NAME parameter
is specified on the TBSAVE or TBCLOSE service, an additional exclusive enqueue
or lock is issued. The resource name consists of the first library name defined in
the ISPTLIB, or the first library name defined in the LIBRARY DD or the top file
specified in the LIBDEF Service stack, concatenated with the name specified in the
NAME parameter. If this enqueue or lock fails, the service terminates with a return
code of 12 and the table is not written.

The table output library represented by the ISPTABL definition or specified library
name is protected from concurrent output operations from any ISPF function
through a separate mechanism not specific to table services.

Example: Create and Update a Simple Table

The following series of commands demonstrates the use of table services:

1. Create a permanent table, named DALPHA, to consist of dialog variables AA,
BB, and CC. AA is the key field. BB and CC are name fields.

ISPEXEC TBCREATE DALPHA KEYS(AA) NAMES(BB CC) WRITE

DALPHA
AA BB cC
Pauly John W590 Jones Beach
Clark Joan Y200 Bar Harbour

Table services adds a row to table DALPHA immediately following the row
added by the previous TBADD. Following the TBADD, the current row pointer
(CRP) is positioned at the newly added row. Before a row is added by the
TBADD service, table service scans the table to determine if the KEY field of
the new row to be added duplicates the KEY field of an existing row. If it does,
the TBADD is not performed.

2. Save table DALPHA for later use by writing it to the table output library.
ISPEXEC TBCLOSE DALPHA

The table DALPHA is written from virtual storage to the file specified by
ISPTABL.

Determining Table Size

The length of any row in a table cannot exceed 65 536 bytes. The length can be
computed as follows:

Row size = 22 + 4a + b + 9c

where:

a = total number of variables in the row, including extensions
b = total length of variable data in the row

c = total number of extension variables in the row

Chapter 3. Introduction to Writing Dialogs 73

Table Services

The maximum number of rows allowed in a table is 16 777 215. However, dialog
variables later used in processing can only keep a value of 999 999 as the
maximum number of table rows. The total table size is the sum of the row lengths,
plus the length of the data table control block (DTCB), plus the sort information
record for sorted tables. The length of the DTCB can be computed as follows:

DTCB length = 152 + 16d

where:
d = total number of columns in the table, not including extension variables

The length of the sort information record can be computed as follows:
sort-information length = 12 + 8e

where:
e = number of sort fields

The number of tables that can be processed at one time is limited only by the
amount of available virtual storage.

Example: Function Using the DISPLAY, TBGET, and TBADD
Services

This topic describes the use of the DISPLAY, TBGET, and TBADD services in a
dialog function that allows a user to add data to a table. A user can start the
function by using the ISPSTART command. If the user has already started ISPF, the
function can be started from:

* A menu

* The command field in any display with an application command that is defined
in the current command table to have the SELECT action

* Another function by using the SELECT service.

During function processing, the DISPLAY service controls displays requesting the
user to enter data about new employees. The data consists of:

* Employee serial number, entered on panel SER

¢ Name and phone number, entered on panel DATA.

Entered information is added to the table, as a row, through use of the TBADD
service.

If the user enters an employee serial number for which an employee record already
exists in the table, a DUPLICATE NUMBER short message displays on line 1 of
panel SER. If the user enters the HELP command or presses the HELP Function
key to get further explanation of this short message, the long message:

EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER
displays on line 3 of the panel.

When the user successfully enters data for an employee, the short message NEW
RECORD INSERTED is displayed on line 1 of panel SER. Then the user can enter
the serial number of the next employee for which table data is to be added.

The user ends function processing by entering the END or RETURN command on
any displayed panel or by pressing the END Function key or RETURN Function
key.

74 2/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Table Services

The following section lists the complete function, followed by each statement with
supporting text and figures.

Command Procedure Function

|1 T 1 T S e T T S e N
SO0 XN MM OO

© N O~

CONTROL ERRORS CANCEL
TBOPEN TAB1 WRITE

DISPLAY PANEL(SER)

if return code = 0, go to 6

if return code = 8, go to 21

TBGET TAB1

if return code = 0, go to 9

if return code = 8, go to 12

DISPLAY PANEL(SER) MSG(EMPX210)
if return code = 0, go to 6

. if return code = 8, go to 21

Set dialog variables to blanks
DISPLAY PANEL(DATA)

if return code = 0, go to 16

if return code = 8, go to 21

TBADD TAB1

if return code = 0, go to 18

DISPLAY PANEL(SER) MSG(EMPX211)
if return code = 0, go to 6

if return code = 8, go to 21

. TBCLOSE TAB1
22.

End the function

Description of Function Steps

1.

CONTROL ERRORS CANCEL

This DM service request specifies that the function is to be terminated for a
return code of 12 or higher from a DM service request.

TBOPEN TAB1 WRITE

Open table TAB1 in update (WRITE) mode. Read table contents, shown in
Eﬁ, into virtual storage. TABI is referred to by Steps 2, 6, 16, and 21.

Table 3. Five Rows in Table TAB1

EMPSER LNAME FNAME I PHA PHNUM

598304 Robertson Richard P 301 840-1224

172397 Smith Susan A 301 547-8465

813058 Russell Richard L 202 338-9557

395733 Adams John Q 202 477-1776

502774 Kelvey Ann A 914 555-4156
3. DISPLAY PANEL(SER)

This DISPLAY operation uses the panel definition SER, shown in Eigure 26 od
, to control the format and content of the panel display, shown in

Chapter 3. Introduction to Writing Dialogs 75

Table Services

%COMMAND ===>_7CMD %

+

%ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL%===> EMPSER+ (MUST BE 6 NUMERIC DIGITS)

+ + + + + +

+PRESS%ENTER+TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.
+
+PRESS%END KEY+(PF3) TO END THIS SESSION.

)PROC
VER (&EMPSER,NONBLANK,PICT,NNNNNN)

)END

Figure 26. Panel Definition SER

COMMAND ===>

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF3) TO END THIS SESSION.

Figure 27. Panel Display SER

Both the panel definition and the display are referred to in Steps 3, 9, and 18.
The display requests that a serial number be entered for an employee. The
user enters the serial number in the field labeled EMPLOYEE SERIAL
NUMBER. The DISPLAY service then stores it in function pool variable
EMPSER, and verifies it as specified on the panel definition. The verification is
specified in a VER statement in the)PROC section of the panel definition, as
shown in :

VER (&EMPSER,NONBLANK,PICT,NNNNNN)

This statement specifies that EMPSER must be nonblank and must consist of
six digits, each in the range of 0-9.

76 2/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Table Services

When the input passes the verification, the DISPLAY service returns control to
the function.

If the input fails the verification, the panel is automatically displayed again,
but with an appropriate ISPF-supplied message displayed, right-justified, on
line 1. For example, if the user fails to enter the required employee serial
number, the ENTER REQUIRED FIELD message is displayed, as shown in

w, and referred to in Steps 3 and 18.

--------------------- EMPLOYEE SERIAL =-------------ENTER REQUIRED FIELD
COMMAND ===>

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF3) TO END THIS SESSION.

Figure 28. Panel Display SER with an ISPF-provided Message Superimposed on Line 1

After the user re-enters the information, it is stored again in function pool
variable EMPSER and reverified. The process is repeated until the information
passes the verification tests.

4. if return code = 0, go to 6

If the return code is 0, the display operation is successfully completed. Go to
step 6 to verify that no record exists for this employee number.

5. if return code = §, go to 21

If the return code is 8, the END or RETURN command was entered on the
display by the user. Go to step 21 to end processing.

6. TBGET TABI1

This TBGET uses the employee serial number, stored in EMPSER in step 3 or
18, to attempt retrieval of an employee record from the TAB1 table. The table
is a keyed table and has been created in another dialog by the service request:

TBCREATE TAB1 KEYS(EMPSER) NAMES(LNAME FNAME I PHA PHNUM)
7. if return code =0, go to 9

A return code of 0 means that the record is found. Therefore, a record already
exists for the employee serial number entered by the user. Go to step 9 to
display the DUPLICATE NUMBER message.

8. if return code = 8§, go to 12

A return code of 8 means that no record is found. Go to step 12 to request the
user to enter employee data.

Chapter 3. Introduction to Writing Dialogs 77

Table Services

9. DISPLAY PANEL(SER) MSG(EMPX210)

This DISPLAY operation uses Eanel definition SER (Figure 26 on page 76) and

message EMPX210, shown in to control the format and content of
the display. Eigure 29 is referred to by steps 9, 13, and 18.

EMPX210 'DUPLICATE NUMBER' .ALARM=YES
"EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.'

EMPX211 'NEW RECORD INSERTED'
"ENTER SERIAL NUMBER FOR NEXT EMPLOYEE RECORD TO BE INSERTED.'

EMPX212 'ENTER PHONE NUMBER'
'"IF THE EMPLOYEE HAS NO PHONE, ENTER 000-000'

EMPX213 'ENTER FIRST NAME'
'"A FIRST NAME OR FIRST INITIAL IS REQUIRED.'

EMPX214 'ENTER LAST NAME'
'"A LAST NAME IS REQUIRED.'

Figure 29. Message EMPX21

The following DISPLAY request, omitting the PANEL(SER) parameter, could
have been used in this step:

DISPLAY MSG(EMPX210)
When the PANEL parameter is omitted, the specified message is
superimposed on the panel currently being displayed, which, in this case, is

the panel SER.

The short form of the message EMPX210, DUPLICATE NUMBER, is
superimposed on line 1 of the panel display, shown in [Eigure 30

--------------------- EMPLOYEE SERIAL -------------DUPLICATE NUMBER
COMMAND ===>

ENTER EMPLOYEE SERIAL BELOW:

EMPLOYEE SERIAL ===> 598304 (MUST BE 6 NUMERIC DIGITS)

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF3) TO END THIS SESSION.

Figure 30. Panel Display SER—Short Form of Message EMPX210 Superimpose Line 1

78 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Table Services

While viewing this message, the user can request the long form of the
message by pressing the HELP Function key. The long form of the message

EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.

is superimposed on line 3 of the display. See Eigure 31.

------------------- EMPLOYEE SERIAL -------------DUPLICATE NUMBER
COMMAND ===>

EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.

ENTER EMPLOYEE SERIAL BELOW:

PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

PRESS END KEY (PF3) TO END THIS SESSION.

EMPLOYEE SERIAL ===> 598304 (MUST BE 6 NUMERIC DIGITS)

Figure 31. Panel Display SER—Long Form of Message EMPX210 Superimposed on Line 3

10.

11.

12.

13.

After the user enters the requested serial number, the DISPLAY service stores
it in function pool variable EMPSER and verifies it as described for step 3.
After the input passes verification, the DISPLAY service returns control to the
function.

if return code = 0, go to 6

If the return code is 0, the display operation is successfully completed. Go to
step 6 to verify that no record already exists for this employee number.

if return code = 8, go to 21

If the return code is 8, the END or RETURN command was entered on the
display by the user. Go to step 21 to end processing.

Set dialog variables to blanks

These function pool variables are set to blank to prepare to receive data for a
new employee record.

DISPLAY PANEL(DATA)

The DISPLAY operation uses panel definition DATA, shown in w
, to control the format and content of the display shown in w

Chapter 3. Introduction to Writing Dialogs 79

Table Services

%COMMAND ===>_7CMD

+

EMPLOYEE SERIAL: &EMPSER

N

+

+ EMPLOYEE NAME:

+ LAST %===>_LNAME +
+ FIRST %===>_FNAME +
+ INITIAL%===>_I+

+

+ HOME PHONE:

+ AREA CODE %===>_PHA+

+ LOCAL NUMBER%===>_PHNUM +

+

+

+PRESS%ENTER+TO STORE EMPLOYEE DATA AS ENTERED ABOVE.
+

+PRESS%END KEY+(PF3) TO END THIS SESSION.

)INIT
.CURSOR = LNAME
IF (&PHA = ' ')
&PHA = 914
)PROC

VER (8LNAME,ALPHA)

VER (&FNAME,ALPHA)

VER (&I,ALPHA)

VER (&PHA,NONBLANK,PICT,NNN)

VER (&PHNUM,PICT, 'NNN-NNNN')

VER (&LNAME,NONBLANK,MSG=EMPX214)
VER (&FNAME,NONBLANK,MSG=EMPX213)
VER (&PHNUM,NONBLANK,MSG=EMPX212)

)END

Figure 32. Panel Definition DATA

80 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Table Services

- N
COMMAND ===>

EMPLOYEE SERIAL: 106085

EMPLOYEE NAME:
LAST ===>
FIRST ==>
INITIAL ===>

HOME PHONE:
AREA CODE
LOCAL NUMBER

===>

>

PRESS ENTER TO STORE EMPLOYEE DATA AS ENTERED ABOVE.

PRESS END KEY (PF3) TO END THIS SESSION.

Figure 33. Panel Display DATA

The variables set to blank in step 12 are displayed, along with the new
employee serial number entered in step 3 or 18. The user is asked to enter, in
the blank fields displayed on the screen, the name and phone number for the
employee.

After the user enters these fields, the DISPLAY service stores the input in
function pool variables LNAME, FNAME, I, PHA, and PHNUM. Then,
verification of the input is performed as specified in VER statements in the

)PROC section of the panel definition (Eigure 32 on page 80).

If the input fields pass the verification tests, the DISPLAY service returns
control to the function.

If the input fields fail the verification tests, a short-form message is displayed
on line 1.

The message can be provided by ISPF, or the number of the message
displayed may have been specified in the VER statement that defined the
verification test. See VER statements containing message IDs EMPX212,
EMPX213, and EMPX214 in Eigure 32 on page 8J. When a message ID is
specified, this message is displayed instead of an ISPF-provided message. In
either case, if the user enters the HELP command, the long form of the
message is displayed on line 3.

The messages request that information be re-entered. When re-entered, this
information is stored again in function pool variables and reverified. The
process is repeated until the verification tests are passed.

14. if return code = 0, go to 16

If the return code is 0, the display operation is successfully completed. Go to
step 16 to add the record to the table.

15. if return code = 8, go to 21

Chapter 3. Introduction to Writing Dialogs ~ 81

Table Services

16.

17.

18.

19.

20.

21.

22.

If the return code is 8, the END or RETURN command was entered on the
display by the user. Go to step 21 to end processing.

TBADD TAB1

This TBADD adds a row to table TAB1 by copying values from function pool
variables to the table row. The values copied are employee serial number,
stored in the function pool variable EMPSER by step 3 or 18, and employee
name and phone number, stored in function pool variables LNAME, FNAME,
I, PHA, and PHNUM by step 13. Function pool variables must have the same
names as the table variables to which they are to be copied by the TBADD
operation. Therefore, the names used in the TBCREATE request are the same
as the names used in the definitions for panels on which the DISPLAY service
accepts user input.

if return code = 0, go to 18

If the return code is 0, the TBADD operation is successfully completed. Go to
step 18 to display the NEW RECORD INSERTED message.

DISPLAY PANEL(SER) MSG(EMPX211)

This DISPLAY operation uses panel definition SER ([Figure 26 an page 7d) and

message EMPX211 ([Figure 29 an page 78) to control the format and content of
the display. The short form of message EMPX211, NEW RECORD INSERTED,

is displayed on line 1. If the user enters the HELP command while this
message is being displayed, the long form of the message (

):
ENTER SERIAL NUMBER FOR NEXT EMPLOYEE RECORD TO BE INSERTED

is displayed on line 3.

The user enters another serial number. The DISPLAY service verifies it as
described in step 3. When the serial number passes the verification tests, the
DISPLAY service returns control to the function.

if return code = 0, go to 6

If the return code is 0, the display operation is successfully completed. Go to
step 6 to verify that no record already exists for this employee number.

if return code = 8, go to 21

If the return code is 8, the END or RETURN command was entered on the
display by the user. Go to step 21 to end processing.

TBCLOSE TAB1
Close the table TAB1. Write it from virtual storage to permanent storage.

End the function.

Specifying DBCS Search Argument Format for Table Services

For table services, you can specify either a DBCS or MIX (DBCS and EBCDIC)
format string as a search argument. If either is used as a generic search argument,
such as xxx* (any argument whose first three characters are “xxx’), the argument
must be specified as follows:

* DBCS format string

DBDBDBDB**

where DBDBDBDB represents a 4-character DBCS string and ** is a single DBCS

character representing the asterisk (*).
MIX (DBCS and EBCDIC) format string
eeee [DBDBDBDBDB] *

82 2/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Table Services

where eeee represents a 4-character EBCDIC string, DBDBDBDBDB represents a
5-character DBCS string, [and] represent shift-out and shift-in characters, and *
is an asterisk in single-byte EBCDIC format.

Using the File-Tailoring Services

The file-tailoring services, listed in the order they are normally invoked, are:

FTOPEN Prepares the file-tailoring process and specifies
whether the temporary file is to be used for output

FTINCL Specifies the skeleton to be used and starts the
tailoring process

FTCLOSE Ends the file-tailoring process

FTERASE Erases an output file created by file tailoring.

File-tailoring services read skeleton files and write tailored output that can be used
to drive other functions. Frequently, file tailoring is used to generate job files for
batch execution.

The file-tailoring output can be directed to a file specified by the function, or it can
be directed to a temporary sequential file provided by ISPE. The filename of the
temporary file is available in system variable ZTEMPF. In MVS, ZTEMPF contains
a data set name. The ddname of the temporary file is available in system variable
ZTEMPN.

Skeleton Files

Each skeleton file is read record-by-record. Each record is scanned to find any
dialog variable names, which are names preceded by an ampersand. When a
variable name is found, its current value is substituted from a variable pool.

Skeleton file records can also contain statements that control processing. These

statements provide the ability to:

* Set dialog variables

* Imbed other skeleton files

* Conditionally include records

* Iteratively process records in which variables from each row of a table are
substituted.

When iteratively processing records, file-tailoring services read each row from a
specified table. If the table was already open prior to processing the skeleton, it
remains open with the CRP positioned at TOP. If the table was not already open,
file tailoring opens it automatically and closes it upon completion of processing.

Problems can occur when using file-tailoring services in conjunction with other
services (EDIT, COPY, ...) that result in modifying the data set members in the
ISPSLIB concatenation. ISPSLIB is the input skeleton library, and it is assumed to
be a static library. FTINCL obtains existing DCB/DEB information based on the
last OPEN done against ISPSLIB by ISPE. It is recommended that applications that
use file tailoring and modify members of ISPSLIB, use the LIBDEF service for
ISPSLIB to point to the application’s skeleton library.

Additionally, the application should check for any changes to the data set
information DCB/DEB prior to invoking file-tailoring services. If there has been a
change, then the application should issue a NULL LIBDEF for ISPSLIB and then
reissue the original LIBDEF for ISPSLIB. This will force a close and re-open of the
ISPSLIB library.

Chapter 3. Introduction to Writing Dialogs 83

File—Tailoring Services

84

Example of a Skeleton File
A sample skeleton file is shown in Eigure 34. It contains MVS job control language

(JCL) for an assembly and optional load-and-go. The tailored output could be
submitted to the background for submission.

//ASM EXEC PGM=IFOX00,REGION=128K

/] PARM= (&ASMPARMS)

//SYSIN DD DSN=8ASMIN: (RMEMBER) ,DISP=SHR
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
)SEL &ASMMAC1 =87

// DD DSN=RASMMAC1,DISP=SHR

)SEL &ASMMAC2 =87

/] DD DSN=8ASMMAC2,DISP=SHR
)ENDSEL

)ENDSEL

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL, (5,2))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL, (2,1))
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL, (2,1))
//SYSPRINT DD SYSOUT= (&ASMPRT)

)CM IF USER SPECIFIED "GO", WRITE OUTPUT IN TEMP DATA SET
)CM THEN IMBED "LINK AND GO" SKELETON

)SEL &GOSTEP=YES

//SYSGO DD DSN=8&&&0BJSET,UNIT=SYSDA,SPACE=(CYL,(2,1)),
/] DISP=(MOD, PASS)

)IM LINKGO

)ENDSEL

)CM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET

)SEL &GOSTEP=NO

//SYSGO DD DSN=&ASMOUT (8MEMBER) ,DISP=0LD

) ENDSEL

//*

Figure 34. Sample Skeleton File

The sample skeleton refers to several dialog variables (ASMPARMS, ASMIN,
MEMBER, and so on) highlighted in the figure. It also illustrates use of select
statements “)SEL” and “)ENDSEL” to conditionally include records. The first part
of the example has nested selects to include concatenated macro libraries if the
library names have been specified by the user (that is, if variables ASMMAC1 and
ASMMAC?2 are not equal to the null variable Z).

In the second part of the example, select statements are used to conditionally
execute a load-and-go step. An imbed statement, “)IM”, is used to bring in a
separate skeleton for the load-and-go step.

Example of Using File-Tailoring Services

The following example illustrates file-tailoring services. For this example, assume
that:

* LABLSKEL is a member in the file tailoring library, containing:

)DOT DALPHA

NAME: &AA
APARTMENT: &BB

CITY: &CC

YEAR: &ZYEAR
)ENDOT

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

File—Tailoring Services

ZYEAR is the name of an ISPF system variable that contains the current year.
* DALPHA is a member of the table library, containing:
DALPHA

AA BB cc
Pauly John W590 Jones Beach
Clark Joan Y200 Bar Harbour

This example creates a name and address list. The file-tailoring service requests
are:

* ISPEXEC FTOPEN
ISPEXEC FTINCL LABLSKEL

Issue ISPF commands to process skeleton LABLSKEL. Obtain values for dialog

variables AA, BB, and CC from table DALPHA. The resulting file-tailoring

output consists of one address label for each row of information in table

DALPHA.

FTOPEN opens both the file-tailoring skeleton and file-tailoring output files.

These files must be defined to ISPF before starting the ISPF session.

FTINCL performs the file-tailoring process by using the file-tailoring skeleton

named LABLSKEL. LABLSKEL contains the file-tailoring controls,)DOT and

)ENDDOT, which specify the use of table DALPHA.

You can issue multiple FTINCL commands to pull in more than one skeleton.
* ISPEXEC FTCLOSE NAME (LABLOUT)

Write the resulting file-tailoring output to a member named LABLOUT
SKELETON.

At the conclusion of processing the previous commands, file-tailoring output file
LABOUT SKELETON contains:

NAME : Pauly John
APARTMENT : W590

CITY: Jones Beach

YEAR: 84

NAME : Clark Joan
APARTMENT : Y200

CITY: Bar Harbour

YEAR: 84

Using the PDF Services

PDF services consist of the BRIF (Browse Interface), BROWSE, EDIF (Edit
Interface), EDIREC (edit recovery for EDIF), EDIT, and EDREC (edit recovery for
EDIT) services and a set of library access services.

Chapter 3. Introduction to Writing Dialogs 85

PDF Services

BROWSE, EDIT, and EDREC

The BROWSE and EDIT services allow you to create, read, or change MVS data
sets or members of an ISPF library. An ISPF library is a cataloged partitioned data
set with a three-level name made up of a project, a group, and type. The ISPF
library can be private (available only to you) or can be shared by a group of users.
The BROWSE and EDIT services provide direct access to the Browse and Edit
options of PDF, bypassing the Browse mode on the View Entry panel and Edit
Entry panels.

The EDREC service, which you usually invoke before calling EDIT, helps you
recover work that would otherwise be lost if ISPF ended abnormally, such as after
a power loss.

Refer to the ISPF Services Guide for complete descriptions, including examples, of
the BROWSE, EDIT, and EDREC services.

BRIF, EDIF, and EDIREC

Two services, the Browse Interface (BRIF) service and the Edit Interface (EDIF)
service, allow dialogs to provide their own I/O for PDF Browse and Edit. These
services provide edit and browse functions for data accessed through
dialog-supplied 1/O routines. BRIF and EDIF require that the invoking dialog
perform all environmentally-dependent functions (such as allocating, opening,
reading, writing, closing, and freeing files).

Use of the BRIF and EDIF services allows the type of data and data access
methods being employed by a dialog to be transparent to Browse and Edit. The
Edit Interface Recovery (EDIREC) service performs edit recovery for EDIF.

These services make it possible to implement functions such as:
 Edit/browse of data other than partitioned data sets or sequential files
* Edit/browse of in-storage data

* Pre- and post-processing of edited or browsed data.

Refer to ISPF Services Guide for descriptions and examples of BRIF, EDIF, and
EDIREC.

Library Access Services

The library access services can interact with the BROWSE and EDIT services and
can also give you access to ISPF libraries and to certain system data sets. These
services carry out functions such as opening a library, copying a library or library
member, and displaying a library’s members.

The library access services can also interact with certain LMF options that allow a
dialog with proper authority to activate library controls, promote members to a
controlled library, and query information about library controls.

You can use the library access services with four types of libraries or data sets:
* An ISPF library known by project, group, and type

* A concatenated set of up to four ISPF libraries

* A single existing TSO or MVS partitioned or sequential data set

* A concatenated set of up to four MVS partitioned data sets.

86 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

PDF Services

The library access services support only those data sets that reside on a single
DASD volume with record format types F, FB, V, VB, and U. The data set
organization must be either partitioned or sequential. ISPF User’s Guide contains an
explanation of the ISPF library structure.

Refer to the ISPF Services Guide for complete descriptions, including examples, of
the library access services.

Another way you can maintain different levels or versions of a library member is
to use the software configuration and library manager (SCLM) utilities. SCLM is a
software tool that helps you develop complex software applications. Throughout
the development cycle, SCLM automatically controls, maintains, and tracks all of
the software components of the application. And, you can lock the version being
edited in a private library and then promote it to another group within the library
for further development or testing. Refer to ISPF Software Configuration and Library
Manager (SCLM) Developer’s and Project Manager’s Guide for more information about
SCLM.

Note: Some library access services perform LMF functions. LMCOPY (with LOCK
option), LMPROM, and LMMFIND (with LOCK option) will fail if one of
the specified libraries is SCLM-controlled: LMF uses the following rule to
determine whether a library is SCLM-controlled. If there is a data set with a
name of the form ‘<project>.PROJDEFS.LOAD’ such that <project> is the
high-level qualifier (or project) of the library in question, then the library is
SCLM-controlled; otherwise, the library is not SCLM-controlled. Note also
that this means that LMF may treat a library as if it were SCLM-controlled
even though it may not be SCLM-controlled.

For example, if a data set existed named ‘PDFUSER.PROJDEFS.LOAD’, then LMF
would treat each of the following data sets as if they were SCLM-controlled:

'PDFUSER.LIST'
'PDFUSER.DEV.PANELS'
'PDFUSER.MAINT.NEW.SKELS'

Where to Find Examples and Listings of PDF Services

ISPF Examples introduces the PDF services through the following type examples:

* Copying a member from one ISPF library to another, using a CLIST.

* Displaying a list of members of an ISPF library for renaming, deleting, and
setting statistics, using PL/I.

* Locking and promoting a member of an LMF-controlled hierarchy, using PL/I
and TSO/REXX.

* Using a combination of COBOL and Assembler routines to do the following:

— Browse an ISPF table with the BRIF service. Included are the main dialog,
read, command, and Assembler interface routines.

— Edit an ISPF table with the EDIF service. Included are the main dialog, read,
write, command, and Assembler interface routines.

* Using PL/I with the EDIF service with an Assembler program to pass return
codes from the PL/I routine to the EDIF service.

Using the Miscellaneous Services

ISPF provides the CONTROL, GDDM, GETMSG, LIBDEF, LIST, LOG, and
PQUERY services, briefly described in the following paragraphs. You can find
more information about these services in the following chapter.

Chapter 3. Introduction to Writing Dialogs ~ 87

Miscellaneous Services

88

CONTROL Service

The CONTROL service allows a function to condition ISPF to expect certain kinds
of display output, or to control the disposition of errors encountered by DM
services. For example, some display conditions are:

LINE Expect line output to be generated by the dialog or
by execution of a TSO command. Optionally, the
starting line can be specified.

LOCK Allow the next display without unlocking the
terminal keyboard. LOCK is generally used with
the DISPLAY service to overlay a currently
displayed panel with an “in-process” message; for
example:

DISPLAY PANEL(panel-name)

CONTROL DISPLAY LOCK
DISPLAY MSG (message-id)

NONDISPL Do not display the next panel. Process the panel
without actually displaying it, and simulate the
Enter key or END command.

REFRESH Refresh the entire screen on the next display.
Typically used before or after invoking some other
full-screen application that is not using DM display
services.

SPLIT Enable or disable split-screen operation by a user
as required by the application.

The disposition of errors can be controlled as follows:

CANCEL
Terminate the function on an error with a return code 12 or higher from
any service. A message is displayed and logged prior to termination.

RETURN
Return control to the function on all errors, with appropriate return code.
A message 1D is stored in system variable ZERRMSG, which can be used
by the function to display or log a message.

The default disposition is CANCEL. If a function sets the disposition to RETURN,
the change affects only the current function. It does not affect lower-level functions
invoked by using the SELECT service, nor a higher-level function when the current
function completes.

GDDM Services

The graphics initialization (GRINIT) service initializes the ISPF/GDDM interface
and optionally requests that ISPF define a panel’s graphic area as a GDDM
graphics field. The graphics termination (GRTERM) service terminates a
previously-established GDDM interface. The graphics error block (GRERROR)
service provides access to the address of the GDDM error record and the address
of the GDDM call format descriptor module.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

Miscellaneous Services

GETMSG Service

The GETMSG service obtains a message and related information and stores them
in variables specified in the service request.

LIBDEF Service

The LIBDEF service provides applications with a method of dynamically defining
application data element files while in an active ISPF session.

LIST Service

The LIST service allows a dialog to write data lines directly (without using print
commands or utilities) to the ISPF list data set. You specify the name of the dialog
variable containing the data to be written on the LIST service request.

LOG Service

The LOG service allows a function to write a message to the ISPF log file. The user
can specify whether the log is to be printed, kept, or deleted when ISPF is
terminated.

PQUERY Service

The PQUERY service returns information for a specific area on a specific panel.
The type, size, and position characteristics associated with the area are returned in
variables.

Chapter 3. Introduction to Writing Dialogs 89

Miscellaneous Services

90 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 4. Common User Access (CUA) Guidelines

This chapter briefly describes how ISPF supports the Common User Access (CUA)
guidelines.

The CUA 89 guidelines define a user interface in terms of common elements, such
as the way information appears on a screen, and interaction techniques, such as the
way users respond to what appears on a screen. Refer to the SAA CUA Basic
Interface Design Guide ISPF supports the CUA guidelines in the following ways. You
can:

* Define a list of function keys to be associated with each panel.
* Define an action bar and pull-downs on a panel.
* Define and display pop-up windows.

* Define and display help panels for field-level help, extended help, and keys
help, See I’Fhapfpr 7 _ISPE T—Tp]p and Tutorial Panels” an page 279 for more

information on CUA help panels.

With ISPF, the panel ID is displayed according to CUA defaults and the PANELID
command acts as a toggle.

ISPF also lets you indicate, for an application session, if you want to use CUA

defaults. If selected, the Panel display CUA mode option on the ISPF Settings

panel controls:

* The location of the function keys on the panel in relation to the command and
message lines.

* The appearance and display format of the keys.

Using the Dialog Tag Language to Define Dialog Elements

The Dialog Tag Language (DTL) is a set of markup language tags that you can use
to define dialog elements. You can use DTL tags in addition to or instead of ISPF
methods for defining panels, messages, and command tables. In addition, when
you define a panel using DTL tags, you can assign a specific keylist to be
associated with and displayed on that panel, if requested by the user.

The DTL defines the source information for the dialog elements, and the ISPF
dialog tag language conversion utility converts the source file to a format ISPF
understands. The ISPF Dialog Tag Language Guide and Reference explains in detail
how to create the various elements using the DTL and ISPF conversion utility.

Keylists

The key assignments active for an application panel are defined and stored within
keylists. These key assignments allow the user to request commands and other
actions through the use of function keys. Key assignments for your application are
displayed in the function key area of application panels. Keylists can be shared
across all users by defining them using DTL. This creates an xxxxKEYS table that is
placed in the ISPTLIB concatenation. Users can modify keylists using the KEYS
and KEYLIST commands. Both commands invoke the Keylist utility. Modifications
to keylists are stored in the user’s application profile, thus they are called private.

© Copyright IBM Corp. 1980, 2001 91

You can view or modify keylists either through the KEYLIST command or the
Keylist settings... choice from the Function keys pull-down on the ISPF Settings
panel. You can control whether your application uses keylists or not with the
KEYLIST command or the Keylist settings... choice from the Function keys
pull-down on the ISPF Settings panel. You can also control whether you use
keylists as shipped with the application or with user modifications. You assign the
keylist to a particular panel by using the keylist keyword on the)PANEL statement
or by using the keylist attribute on the PANEL tag. For a description of the panel
section, see Defini ion”

Action Bars and Pull-Downs

An action bar is the panel element located at the top of an application panel that
contains action bar choices for the panel. Each action bar choice represents a group
of related choices that appear in the pull-down associated with the action bar
choice. When the user selects an action bar choice, the associated pull-down
appears directly below the action bar choice. Pull-downs contain choices that,
when selected by the user, perform actions that apply to the contents of the panel.

For complete details on coding action bars and pull-downs, refer to the ISPF Dialog
Ta§ Lan%ua%e Guide and Reference or the I”Dpﬁ‘ning the Action Bar Choice Section’]

Pop-Up Windows

92

Pop-up windows display information that extends the user’s interaction with the
underlying panel. When a pop-up is displayed, the user must finish interacting
with that pop-up window before continuing with the dialog in the underlying
panel.

The ADDPOP service allows your application to use pop-up windows. After you
issue the ADDPOP service, subsequent DISPLAY, TBDISPL, or SELECT service
calls display panels in that pop-up window until your application issues a
corresponding REMPOP service or issues another ADDPOP service.

You specify the location of the pop-up window using the ADDPOP service call.

Note: When you are running in GUI mode, this pop-up window location
specification is ignored. Default positioning is used.

You can specify the size of the window (width and depth) on the panel definition
BODY statement or use the WIDTH and DEPTH attributes on the DTL PANEL tag.
If you do not specify the size, the Dialog Manager displays the pop-up window in
a 76 X 22 window with a border.

Each pop-up window created as a result of a successful ADDPOP service call can
also have a window title. The title is imbedded in the top of the window frame
border and can be only one line in length. If the title is longer than the window
frame, the dialog manager truncates it. To define the window title, set system
variable ZWINTTL to the desired window title text.

Note: If you are running in GUI mode, the value in ZWINTTL has a maximum
length of 255 characters and will be truncated without notice to the user at
display time if it does not fit on the panel.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

The following example will display three pop-up windows, as shown in Eigure 33.
The window that panel B is displayed within will have the titte POPUP WINDOW

TITLE.

PROC 0

ISPEXEC ADDPOP

ISPEXEC DISPLAY PANEL(A)
ISPEXEC ADDPOP POPLOC(F1)

SET ZWINTTL = POPUP WINDOW TITLE

ISPEXEC DISPLAY PANEL(B)
SET ZWINTTL =
ISPEXEC ADDPOP
ISPEXEC DISPLAY PANEL(C)

=)
E‘D| | =] |E|
Menu Utilities Compilers Options Status Help
777777777 Panel A —-——————————- ption Menu
0 Field 1 . ters User ID . : USERID
1 Field 2 . istings Time. . . : 14:27
2 Field 3 — POPUP WINDOW TITL .1 3278
3 Field 4 . . . | -=====-—- Panel B --—--------- L1
4 . : ENGLISH
5 This is Panel B : ISR
6 ocC
7 COMMAND ===> _ Fiel | --=-=------ Panel C --------=---- D
8 F1=HELP F2=S Fiel
9 F4=RETURN F5=R Fiel This is Panel C 6,B
1 Fiel 4.1
Field E

Enter X to Terminate COMMAN Field F

F1=HE Field G

F4=RE Field H

COMMAND ===>

Option ===> TSO ADDP F1=HELP F2=SPLIT F3=END
Fl=Help F2=Split F3 FA=RETURN F5=RFIND F6=RCHANGE
Fl0=Actions Fl2=Cancel

Figure 35. Example Panel Displaying Three Pop-Up Windows

The REMPOP service removes the current pop-up window. After you call the
REMPOP service, a subsequent DISPLAY service will either display a panel in the
full panel area of the screen or in a lower-level pop-up window, if it is active.

Refer to ISPF Services Guide for a complete description of the ADDPOP and

REMPOP services.

Moveable Pop-Ups

ISPF provides two distinct mechanisms for you to move the currently active
pop-up window: the WINDOW command or manual movement using two
terminal interactions and no specific ISPF command. You can also move the
window with any other method you normally use to move windows on your

workstation.

Note: The WINDOW command is disabled if you are running in GUI mode.

Chapter 4. Common User Access (CUA) Guidelines

93

WINDOW Command

The WINDOW command can be associated with a function key or can be typed on
the command line. The cursor placement specifies the new location for the
upper-left corner of the pop-up window frame. If the pop-up window does not fit
on the physical screen at the specified location, it is repositioned to fit following
the current pop-up window positioning rules. The cursor is placed in the same
relative position it occupied prior to a dialog or help pop-up window being
moved.

If the cursor location would be covered as a result of moving a modeless message
window, the cursor is repositioned to the first input field on the active panel. If an
input field does not exist, the cursor is positioned in the upper-left corner of the
active panel. The cursor is returned to its intended location if the modeless
message window is moved to a location that no longer conflicts with cursor
display. Cursor positioning is not affected by an input field that becomes protected
as a result of a modeless message window position unless the cursor itself would
be covered. In other words, the cursor can be positioned on a protected input field.

The WINDOW command is an immediate action command. Panel processing is not
performed when this command is used.

If the WINDOW command is typed in the command line, the cursor should be
moved to the desired window position prior to pressing Enter.

If the WINDOW command is included in the keylist associated with the currently
active application panel, the user can move the cursor to any position on the
screen, press the function key assigned to the WINDOW command, and the
pop-up is repositioned to the user’s cursor position. The WINDOW command can

be included in the keylist by the application developer, or the user can use the
KEYLIST utility to add it to the keylist.

For panels that do not include the KEYLIST keyword in the)PANEL statement, the
application can assign the WINDOW command to a ZPFnn system variable. The
user can also associate WINDOW with a function key by using the ZKEYS
command to access the function key assignment utility.

If the split screen is used, the pop-up cannot be moved to a different logical screen.
The new pop-up window location must be in the same logical screen in which the
pop-up was originally located. A pop-up is not displayed over the split line. The
split line cuts off the pop-up at the split line location; the pop-up is not
automatically repositioned to fit above the split line.

Note: Pull Down Choice (PDC), Action Bar is also a pop-up window, so the split
screen line cuts off the Action Bar location, too. The pop-up is not
automatically repositioned to fit above the split line.

If the WINDOW command is requested when pop-up windows are not active, a
message is displayed to the user. A pop-up window containing an Action Bar
panel cannot be moved while a pull-down is actively displayed. A message is
displayed to the user if the WINDOW command is requested during this
condition.

Manual Movement

The second method for moving pop-up windows involves two terminal
interactions but does not require a unique ISPF command. A user can request

94 7/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

window movement by placing the cursor anywhere on the active window frame
and pressing Enter. ISPF acknowledges the window move request by displaying
WINDOW MOVE PENDING message. The alarm will sound if the terminal is so
equipped. The message text will be yellow /high intensity if the Panel display CUA
mode option on the ISPF Settings panel has been selected. Otherwise, the message
text will be white/low intensity.

Place the cursor where you want the upper-left corner of the window frame placed
and press Enter a second time. The window is moved to the new location just as
though the WINDOW command had been issued. The rules for cursor placement
inside the window, and window placement on the physical display, are the same as
those described for the WINDOW command.

Pop-Up Movement Considerations

Modeless and modal message pop-up windows can be moved in the same manner
as dialog pop-up windows.

Only the active pop-up window can be moved. If a modal or modeless message
pop-up is displayed over a dialog pop-up window, only the message pop-up
window can be moved. The underlying dialog pop-up window cannot be moved
while a message pop-up window is displayed over it.

Input fields that are partially or totally covered by a pop-up window become
protected fields (data cannot be entered into the field). If a field becomes totally
uncovered as a result of moving the pop-up window, the field is restored to an
unprotected field (data can be entered into the field).

Field-Level Help

Field-level help provides help panels for fields defined on an application panel.
When the cursor is on a field and the user requests HELP, ISPF displays the help
panel defined for that field. See I”Dpﬁning the HEL.P Section” an page 214

Extended Help

Extended help provides general information about the contents of a panel. The
information in extended help can be an overall explanation of items on the panel,
an explanation of the panel’s purpose in the application, or instructions for the
user to interact with the panel. The user invokes extended help by issuing the
command EXHELP. EXHELP requests ISPF to display help text for the entire panel.

For more information on help, see . HELP” on page 274 and EChapter 7 ISPE Held

”

Keys Help

Keys help provides the user with a brief description of each key defined for a
panel. You define the contents of this help panel. The user invokes keys help by
issuing the command KEYSHELP.

KEYSHELP requests ISPF to display the help panel for the current keylist. The help
panel name can be provided as part of the keylist definition. If the keys help panel
is not identified in the keylist definition, it can be supplied in the ZKEYHELP
system variable. Use separate ZKEYHELP variable values for each keys help panel
to be displayed.

Chapter 4. Common User Access (CUA) Guidelines 95

Reference Phrase Help

96

Reference phrase (RP) help is available on all panels. Place the cursor on a
highlighted reference phrase within a panel, request help, and you receive the help
panel defined for that reference phrase.

When a panel with reference phrases is displayed for the first time, the cursor is
positioned in the upper-left corner. After a reference phrase is selected and control
is returned to the original panel, the panel scrolls automatically to put the cursor
on the reference phrase from which the reference phrase help was invoked. The
exact scroll position might not be the same as when the reference phrase help was
invoked. ISPF positions the reference phrase at the top of the display is scrolling is
necessary to display the reference phrase help field. The reference phrase is an
input-capable field that allows tabbing. Therefore, the reference phrase text is
refreshed whenever the panel is redisplayed.

Reference phrase help panels themselves can also contain reference phrases. When
a reference phrase help panel is cancelled, the panel from which reference phrase
help was requested is redisplayed. All other help facilities are available from a
reference phrase help panel.

The TYPE(RP) attribute in the panel attribute section is used to identify a reference
phrase in a pane]_ See I”Dpﬁning the Attribute Section” on page 171 An entry is
then placed in the)HELP section of the panel for each reference phrase attribute
coded in the)BODY or optional JAREA panel sections. The following example is a
JHELP section reference phrase definition:

)HELP
FIELD(ZRPxxyyy) PANEL(panel-name)

XX 00 for a reference phrase defined in)BODY section and 01 to 99 for the
number of the scrollable area in which the reference phrase is defined.

Each scrollable area is assigned a sequential number based on its relative
position within the panel body. The scrollable area closest to the upper-left
corner of the panel body is assigned number 01 with each additional
scrollable area, scanning left to right, top to bottom, assigned the next
sequential number. A maximum of 99 scrollable areas in any given panel
may contain reference phrases.

yyy 001 to 999 for the relative number of the reference phrase within the panel
body or within a particular scrollable area.

panel-name
Name of the help panel to be displayed when HELP for this reference
phrase is requested.

A reference phrase can wrap around multiple terminal lines in panels that are not
displayed in a window. A reference phrase that logically wraps in a pop-up
window requires the beginning of each wrapped line to contain a RP field
attribute, and there must be an entry in the)HELP section for each wrapped line.
This is also true for panels containing the WINDOW() keyword that are not
displayed in a pop-up window. The additional)HELP section entries would
normally be pointing to the same panel.

The example in [Eigure 36 on page 97 illustrates both single and multiple line
reference phrases.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

) PANEL
)ATTR
TYPE(RP)
§ AREA(SCRL) EXTEND(OFF)
)BODY
+This is sample text. This is a #Reference Phraset+.
+This is an example of a #Reference Phrase being
physically continued to the next Tine.+

B s

+ *$SAREA1 §* ok ok ok ok ke ok ok ke ke ke ok ok ok ok
+ *$ $x *$SAREA2 §=
+ *§ $* *$ $x
+ kk kAR RRRR KRR AARRR KKK *$ §*
+ kkkkkkkkkkkkkkkkkkkkk *$ §*
+ *$SAREA3 $x *$ §=
+ *§ §* ook ok k ok ok ok ok ok ke kK ko ko
+ *§ §*

R S L D

+This is an example of a #Reference Phrase being+
#logically continued to the next Tine.+
+

)AREA SAREA1

+ +

#Area 01 Ref Phraset

+ +

)AREA SAREA2

+ +

+ #Area 02+ +

+ #Reference++

+ #Phrase+ +

)AREA SAREA3

+ +

#Area 03 Ref Phraset+

+ +

YHELP

FIELD(ZRPOO0O1)
FIELD(ZRPOO0O2)
FIELD(ZRPOO0O3)
FIELD(ZRPOO004)
FIELD(ZRPO1001)
FIELD(ZRPO2001)
FIELD(ZRPO2002)
FIELD(ZRPO2003)
FIELD(ZRP03001)

PANEL (BODY0001)
PANEL (BODY0002)
PANEL (BODY0003)
PANEL (BODY0003)
PANEL (AREA0101)
PANEL (AREA0201)
PANEL (AREA0201)
PANEL (AREA0201)
PANEL (AREA0301)

)END

Figure 36. Reference Phrase Help Example

START Service

You can use the START service to start a dialog in a new logical screen. This
function is similar to the function nesting made available with action bars except
that the “nesting” occurs in a new logical screen.

You can invoke the START service in any of the following ways:
¢ From any command line, you can enter the command
START some_dialog

where some_dialog can be any of the following:
— A command from the command table; for example, MYCMD1

Chapter 4. Common User Access (CUA) Guidelines 97

98

— A command with parameters (must be in quotes); for example,
'"MYCMD1 PARM1'
— A dialog invocation; for example, PANEL(MYPAN1), or
"PGM(MYPGM1) PARM(MYPARM1,MYPARM2)'
* You can code a pull-down choice,
ACTION RUN(START) PARM(some_dialog)

where some_dialog is the same as outlined above.
* You can code a selection panel option,
"PGM(ISPSTRT) PARM(some_dialog)'

For example,

&ZSEL = TRANS (&XX
0, 'PGM(ISPSTRT) PARM(PGM(MYPGMO))"
1,'PGM(ISPSTRT) PARM(PGM(MYPGM1) PARM(MYPARML))"
2,'PGM(ISPSTRT) PARM(MYCMD1 MYPARM2)'
3, 'PGM(ISPSTRT) PARM(PANEL(MYPANEL1))"

e From a dialog, you can invoke,
ISPEXEC SELECT PGM(ISPSTRT) PARM(some_dialog)

where some_dialog is the same as described above.

Note: The some_dialog should not exceed 249 characters. It will be truncated at
249 without warning. You should not use either WSCMD or WSCMDYV in
your specification of some_dialog.

Note: For ISPF functions that have service interfaces, such as EDIT and BROWSE,
you should use the service invocations. Using ISPSTRT passing the selection
strings from panel ISR@PRIM does not work in all situations and is not
supported.

If the maximum number of logical screens do not exist when the START command
is invoked and:

* some_dialog is a command from the command table, the new screen is invoked
with the default initial command (in non-display mode) and the command is
run. When the user ends the dialog this new screen still exists.

e if some_dialog is specified as PGM(xxx), CMD(xxx), or PANEL(xxx), the new
screen is invoked with PGM(xxx), CMD(xxx), or PANEL(xxx) as the initial
command, program, or panel. The result is that when you end the xxx dialog,
this new screen is terminated.

If the maximum number of logical screens has already been reached when the
START command is invoked, the specified some_dialog will be executed on top of
the currently displayed screen. The result is that when you end the dialog, ISPF
returns to the previously-displayed screen.

On 3270 displays, if ISPF is not in split screen mode the START command and
ISPSTRT program split the screen at extreme top or bottom of the display. If ISPF
is already in split screen mode, ISPF starts the new screen in the opposite screen,
using the existing split line location.

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 5. Panel Definition Statement Guide

This chapter provides guide-type information for sections, panel definition
statements, and control variables.

You can create ISPF panels in one of three ways:

¢ Use the Dialog Tag Language (DTL) and ISPF DTL conversion utility only. With
DTL, you create a source file containing DTL tags that define what information
you want for each panel. This source file is then processed through the ISPF
conversion utility to produce a pre-processed ISPF panel library member ready
for display.

* Use DTL and panel definition statements. This option allows you to stop the
conversion process at the ISPF panel definition source level. You can then edit
the resulting panel definition source file using any of the panel definition
statements available in this book.

* Use panel definition statements only. Using panel definition statements, you
define panels closely resembling the finished panel. Each character position in
the panel definition corresponds to the same relative position on the display
screen.

To create panels with DTL or to learn how to capture the panel definition source
file, refer to the ISPF Dialog Tag Language Guide and Reference

This chapter explains how to create panels using the panel definition statements.
(This information applies to the second and third options described above.) Both
general overview information on panel definition and specific information on each
panel section is included. The topics are arranged as follows:

* An introduction to the panel definition sections

* General tips and guidelines for formatting panels
* Syntax rules and restrictions for panel definition
* A discussion of each panel section

* Using Z variables as field name placeholders

* Panel processing considerations

* Support for panel user exit routines

* Special requirements for defining menus, table display panels, and panels with
dynamic or graphic areas.

shows an example panel definition which uses CUA
panel-element attributes. See Eigure 65 on page 212 for an example panel definition
that does not use CUA panel-element attributes.

Note: When not in TEST mode, the most recently accessed panel definitions are
retained in virtual storage for performance reasons. If you have modified a
panel, using TEST mode will ensure that the updated version of the panel
will be picked up by ISPF services. See IISPE Test and Trace Modes” onl

for more information.

© Copyright IBM Corp. 1980, 2001 99

Introduction to Panel Definition Sections

Each Ea

nel definition consists of various combinations of the sections described in
The sections you choose to use must be in the order listed in this table.

Table 4. Panel Definition Sections

Section

Optional

Required

Description

)CCSID

Yes

CCSID section. Specifies the Coded Character Set Identifier
(CCSID) used in the panel definition. If used, panel text
characters are translated to the terminal code page for
display.

)PANEL

Yes

Panel section. Specifies a keylist to be used during the
display of the panel. Identifies where the keylist is to be
found. Specifies that the panel is to be displayed in CUA
mode.

)ATTR

Yes

Attribute section. Defines the special characters in the body
of the panel definition that represent attribute (start of field)
bytes. You can override the default attribute characters
provided with ISPF.

)ABC

Yes

Action bar choice section. Defines a choice in the action bar,
its associated pull-down choices, and the actions to be taken
for each pull-down choice.

)ABCINIT

Yes, if)ABC is
specified

Action bar choice initialization section. Specifies processing
that is to occur for an action bar choice prior to the display
of the panel.

)ABCPROC

Action bar choice processing section. Specifies processing that
is to occur for an action bar when the panel is submitted for
processing.

)BODY

Yes

Body section. Defines the format of the panel as seen by the
user and defines the name of each variable field on the
panel.

YMODEL

Yes, for table
display

Model section. Defines the format of each row of scrollable
data. This section is required for table display panels. Only
one)MODEL section is allowed per panel.

)AREA

Yes

Scrollable area definition section. Defines a scrollable section
of the panel.

)INIT

Yes

Initialization section. Specifies the initial processing that is to
occur prior to displaying the panel. This section is typically
used to define how variables are to be initialized.

)REINIT

Yes

Reinitialization section. Specifies processing that is to occur
prior to redisplay of a panel.

)PROC

Yes

Processing section. Specifies processing that is to occur after
the panel has been displayed or redisplayed. This section is
typically used to define how variables are to be verified and
translated.

)HELP

Yes

Help section for field help. Specifies the help panels to
display when help is requested for a field, list column, action
bar choice, or pull-down choice defined in the panel or
reference phrase.

)PNTS

Yes

Point-and-shoot section. Contains an entry for each field on a
panel that has been designated as a point-and-shoot field.

)LIST

Yes

List section. Specifies a list to build on the panel.

100 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Table 4. Panel Definition Sections (continued)

)END Yes End section. Specifies the end of the panel definition. The
JEND (end) section consists only of the)END statement. ISPF
ignores any data that appears on lines following the)END
statement.

Guidelines for Formatting Panels

Once ISPF is installed, consider using its edit model facilities to help you create
panel definitions.

When using Edit to create a panel definition, specify NUMBER OFF to prevent
numbers from appearing in the file. Numbers cause a panel syntax error when you
attempt to process the panel definition.

ISPF panel definitions are stored in a panel library and are displayed by means of
the SELECT, DISPLAY, or TBDISPL service. Each panel definition is referred to by
its name, which is the same as the member name in the library.

You can create or change panel definitions by editing directly into the panel library.
No compile or preprocessing step is required. Use the name of this panel library
member as the panel-name parameter when requesting dialog services, such as
DISPLAY and SELECT.

As shown in w, the first three displayable lines below the action bar, if
present, in a panel definition include:

* Panel ID and title area

* System-defined (default) areas for message display

* A command/option field

* A scroll field, if applicable.

You can override the location of the long message area and command field from
the ISPF Settings panel.

Action Bar Line or Lines
Separator Line

Panel ID Title Short Message

Command/Option Scroll

Long Message

Figure 37. Sample Panel Definition Format

Action Bar Line
The action bar line displays the action bar choice-description-text. You can
define multiple action bars for a panel. A separator line should follow the
last action bar line. ISPF considers the panel line following the last action
bar choice as part of the action bar area. See L i i

Title Line
The title line should contain a centered title indicating the function being

Chapter 5. Panel Definition Statement Guide 101

102

performed or, where appropriate, should display information critical to
that function. If not running in the GUI mode, the panel ID is added to the
beginning of this line if a panel ID is requested by using the PANELID
system command. The right-hand 26 characters of this line should not
contain critical information if short messages are to be used in the default
short message area.

Short Messages

If short messages are used, they should provide a brief indication of either:
* Successful completion of a processing function
 Error conditions, accompanied by audible alarm.

Short messages temporarily overlay information currently displayed in the
right-hand end of the first line, and are removed from display on the next
interaction. The original information is redisplayed when the message is
removed.

Use short messages consistently throughout the application, or not at all.

For table display, the short message area contains a top-row-displayed
indicator, except when overlaid by a function-requested message. The
TBDISPL service automatically generates this indicator, and replaces data
that was in the panel definition in that area. Attribute bytes in the short
message area can cause the top-row displayed indicator to be unreadable.

Command/Option Line

The command/option line generally contains the command field. This
same field should be used for option entry on menus. The command field,
when the first input field on the panel or when identified by using the
keyword CMD on the header of the panel body section, can be named
using any valid variable name. However, the name ZCMD is generally
used.

Cursor placement for viewing a panel differs, depending on the use of the
name ZCMD or other names. When you use ZCMD and cursor placement
is not explicitly specified, ISPF skips over a blank command field to place
the cursor on a following input field. When you use a name other than
ZCMD, ISPF does not skip over a blank command field when placing the
cursor during display.

Scroll Amount

For table display, Edit, and Browse panels, as well as panels with scrollable
dynamic areas, the scroll amount field should be on the right-hand side of
the command line. The scroll amount field must be the first input field
following the command field and must be exactly 4 characters in length. A
scroll amount field is not meaningful for other types of panels and should
be omitted from them.

Long Messages

The long message line should generally be left blank, so that long
messages do not overlay any significant information. An exception to this
rule might be made in the case of table display panels, to allow as much
scrollable data as possible to fit on the screen. An input field, such as the
command field, should not be located on the same line on which long
messages are displayed. The display of long messages will be
superimposed on the input field, and results are unpredictable.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Requirements for Specifying Message and Command Line
Placement

The placement of the command line and long message field at the bottom of a
logical screen is a user-definable option. Placement is controlled by the system
variable ZPLACE. You can select or deselect Command line at bottom on the ISPF
Settings panel, and the setting changes the value of ZPLACE. ZPLACE can also be
changed in a dialog.

The value of ZPLACE is stored in the application profile pool. To change the value,
use the VPUT statement in a panel definition, the VPUT service in a dialog
function, or the ISPF Settings panel options. None of these settings takes priority
over the others. For example, an ISPF Settings panel selection can change what a
dialog set, and vice versa.

If the panel specifies ASIS on the)BODY statement for a panel, the command and
message lines are not repositioned, even if you specify placement at the BOTTOM.
The command line moves only if all of the following are true.

* For primary windows:
1. If the WINDOW(w,d) keyword is specified on the header statement where w
is less than the screen width, then:

a. The keyword ASIS must not be specified on the) BODY header statement.
b. The first character of the command line must be an attribute character.

2. If the WINDOW(w,d) keyword is specified on the header statement where w
is equal to the screen width or the WINDOW keyword is not specified, then:

a. The keyword ASIS must not be specified on the) BODY header statement.

b. The first and last character of the command line must be an attribute
character, and one of the following is true:

1) There is an attribute byte in the first column of the line following the
command line.

2) There is an attribute byte in the last column of the line preceding the
command line.

3. For pop-up windows, the keyword ASIS is not specified on the)BODY
header statement.

Command lines that move in panels designed for primary windows will continue
to move if these panels are displayed in pop-up windows. In addition, command
lines in panels created using the DTL and converted using the ISPF conversion
utility will move in both primary and pop-up windows.

If requirement 2b1 is false, but 2b2 is true, ISPF changes the attribute byte in the
last column of the line preceding the command line to match the attribute byte in
the last column of the command line. This gives the same result as 2b1.

For the long message line to be moved, the panel must be designed so that the
system default is used to position the long message. That is, an alternate long
message field cannot be specified by the panel designer using the keyword 'LMSG’
on the) BODY header statement.

The long message line is not moved unless the command line is moved, but the
command line is moved regardless of whether the long message field is moved.

Chapter 5. Panel Definition Statement Guide 103

104

Additional Suggestions for Designing Panels

Avoid overly cluttered panels. Split busy panels into two or more simple panels
that have less information and are easier to read. Use scrollable areas where
appropriate.

Do not use the last available line in a panel body. For example, if the dialog can
be used on 24-line terminals, limit the body to 23 lines, or less. This is because in
split-screen mode the maximum length of a logical screen is one less than the
length of the physical screen.

The PFSHOW | FKA command usually requires a minimum of two lines of a
panel for displaying function key status. Therefore, you should leave the bottom
two panel lines blank.

Place important input fields near the top of the panel and less important fields,
especially optional input fields, further down. In split-screen mode, the bottom
of the panel might not be visible unless you reposition the split line.

Place important input fields near the top of a scrollable area to minimize the
need for scrolling.

Place the command line near the top of the panel. If the command line is near
the bottom and you enter split-screen mode, the command line cannot be visible
on the screen. Therefore, if you do not have function keys, you might not be
able to continue processing the dialog. If, for a particular session, you will not be
entering the split-screen mode, you can use the option 0 (Settings) to specify that
the command line be placed at the bottom of the screen. However, if you want
to place the command line at the bottom, use the ZPLACE system variable.

Where practical, align fields vertically on a panel, especially input fields. Group
related input fields under a common heading. Minimize the use of multiple
input fields on the same line, so that the NEW LINE key can be used to skip
from one input field to the next.

Use visual signals to indicate particular types of fields, such as arrows to
indicate input fields, and colons to indicate variable information that is
protected. Examples:

FILE NAME ===> (arrow signals an input field)

EMPLOYEE SERIAL: 123456 (colon signals a protected field)

To conform to the CUA guidelines, use leader dots and an ending colon for all
protected fields, use leader dots for all input fields, and use ===> for all
command areas. For example:

EMPLOYEE NUMBER . : 015723

ADDRESS 6510 Main Street
CITY, STATE Imperial, PA
Command ===>

In any case, be consistent. Arrows, colons, and other visual signals are very
confusing if used inconsistently.

Use highlighting sparingly. Too many intensified fields result in visual
confusion. Again, be consistent. Highlight the same type of information on all
panels.

It is recommended that DTL be used to design CUA-based panels. The
conversion process can be stopped at the ISPF panel definition source level in
order to add any additional processing.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Example of a CUA Panel Definit

The panel definition shown in

)PANEL KEYLIST(ISPSAB,ISP)
JATTR FORMAT (MIX)
! TYPE(AB)
TYPE (ABSL)
TYPE(PT)
TYPE(CH)
TYPE(FP)
TYPE(NT)
TYPE(NEF) PADC()
TYPE(NEF) PADC(_) CAPS(ON)
TYPE(LEF) PADC()
TYPE(LI)
TYPE(LI) CAPS(ON)
)ABC
DESC('Options"')
PDC DESC('Create
PDC DESC('Change
PDC DESC('Delete
PDC DESC('Browse
PDC DESC('Exit Keylist Utility ')
)JABCINIT
.ZVARS=ZPDC
&ZPDC=" '
IF (&COPTIONS=CREATE)
&ZPDC=1
IF (&COPTIONS=CHANGE)
&ZPDC=2
IF (&COPTIONS=DELETE)
&ZPDC=3
IF (&COPTIONS=BROWSE)
&ZPDC=4
IF (&COPTIONS=EXIT)
&ZPDC=5
)ABCPROC
VER (&zPDC,LIST,1,2,3,4,5)
IF (&ZPDC=1)
&COPTIONS=CREATE
IF (&ZPDC=2)
&COPTIONS=CHANGE
IF (&ZPDC=3)
&COPTIONS=DELETE
IF (&ZPDC=4)
&COPTIONS=BROWSE
IF (&ZPDC=5)
&COPTIONS=EXIT

1l AN a3

U — |

")
‘)
")
")

Figure 38. CUA Panel Definition (Part 1 of 2)

lion

| illustrates many of the panel sections and
panel-element attributes that are available to support CUA panel definitions.

Chapter 5. Panel Definition Statement Guide

105

)ABC
DESC('Change Keylists')
PDC DESC('Current panel keylist ')
PDC DESC('Current dialog keylist ')
PDC DESC('Specify keylist ')
YABCINIT
.ZVARS=ZPDC
&ZPDC=" '
IF (&CCHANGE=PANEL)
&ZPDC=1
IF (&CCHANGE=DIALOG)
&ZPDC=2
IF (&CCHANGE=ANY)
&ZPDC=3
)ABCPROC
VER (&zPDC,LIST,1,2,3)
IF (&ZPDC=1)
&CCHANGE=PANEL
IF (&ZPDC=2)
&CCHANGE=DIALOG
IF (&ZPDC=3)
&CCHANGE=ANY
)BODY WINDOW(62,22) CMD(ZCMD)
I Options! Change Keylists

Keylist Utility for &kTuappl
_Command ===>_7

<Enter keylist name?Z "<O0R

"Select one keylist name from the 1ist below:
$Select Keylist T -

)MODEL o
|z "z %7 %1
JINIT

.ZVARS = '(ZCMD KEYLISTN S KLUKLNFT SOURCET CURKEYL)'
HELP = ISP5800

&ZCMD = '

ATTR(S)="JUST (LEFT) *
ATTR(KLUKLNFT)="JUST (LEFT)
.ATTR(SOURCET)="JUST (LEFT)
.ATTR(CURKEYL)="JUST (LEFT)
.CURSOR = 'KEYLISTN'

)PROC

VER (8KEYLISTN NAME)

YHELP

FIELD(ZABCO1) PANEL(ISPKH2)
FIELD(ZPDCO101) PANEL(ISPKH2A)
FIELD(ZPDCO102) PANEL(ISPKH2B)
FIELD(ZPDCO103) PANEL(ISPKH2C)
FIELD(ZPDCO104) PANEL(ISPKH2D)
FIELD(ZABCO2) PANEL(ISPKH3)
FIELD(ZPDCO201) PANEL(ISPKH3A)
FIELD(ZPDC0202) PANEL(ISPKH3B)
FIELD(ZPDCO203) PANEL (ISPKH3C)
FIELD(KEYLISTN) PANEL(ISPKH1)
)END

Figure 38. CUA Panel Definition (Part 2 of 2)

This panel definition will display the keylist utility panel, SAMPAN, shown in

Eigure 39 on page 104

106 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Sl EE

ISPF Settings
- Functions Change Keylists | ———m—mm— o

SAMPAN Keylist Utility for ISP Row 1 to 10 of 16 ore: +

Enter keylist name OR

Select one keylist name from the list below:
Select Keylist
ISPHELP
ISPHLP2
ISPKYLST
ISPNAB
ISPSAB
TISPSNAB
ISPTEST
ISRHELP
ISRNAB
ISRNSAB

*** Currently active keylist ***

oL vL VALV EL VB Bl o B o Bl v I

Command ===>
C Fl=Help F2=Split F3=Exit F7=Backward
F8=Forward F9=Swap F1l0=Actions Fl2=Cancel =Swap

Figure 39. Sample CUA Panel (SAMPAN on ISPKLUP)

Factors That Affect a Panel’s Size

The total number of lines allowed in a panel definition depends upon the storage
size available. Panel definitions can be 80-160 characters wide. However, the width
cannot be greater than that of the physical screen of the terminal used for the
display. The WIDTH keyword in the panel definition determines the width of a
display. If you are defining a panel to be displayed in a pop-up window, use the
WINDOW keyword on the)BODY statement.

Two shared pool system variables, ZSCRMAXD and ZSCRMAXW, contain physical
terminal screen depth and width. These variables cannot be modified. When using
terminals for which an alternate size is available, these variables reflect the
configuration that produces the largest screen buffer.

For example, in the case of a 3278-5 (or 3290 set up as a 3278-5), the available
screen sizes are 24 x 80 and 27 x 132. Therefore, the values in ZSCRMAXD and
ZSCRMAXW are 27 and 132, respectively. For the 3290, these variables contain the
sizes of the hardware partition in which ISPF is operating.

When running in GUI mode, if the panel exceeds the width and/or depth of the
physical display, scroll bars are automatically added to allow viewing of the
hidden portion of the screen.

Vertically Scrollable Panels

You can also define more information than can fit on the panel display by defining
an AREA(SCRL) attribute in the panel attribute section and by defining a panel
)JAREA section. You can scroll each area to see and interact with the total content

defined for the area. See I‘Defining the Area Section” on page 164 for further

discussion of the)JAREA section and scrollable panel areas.

Chapter 5. Panel Definition Statement Guide 107

Syntax Rules and Restrictions for Panel Definition

108

The following apply to panel definitions:

All statements, variable names, keywords, and keyword values can be entered in
either uppercase or lowercase. ISPF translates variable names within the panel
body or within panel statements to uppercase before processing them. Values
assigned to dialog variables in the panel body or in the executable sections are
stored as entered, in uppercase or lowercase. When symbolic substitution using
a double ampersand is attempted, the variable will not be updated because ISPF
makes only one pass when scanning for variable replacement.

The command field cannot be longer than 255 characters. This is the first input
field on the panel, unless otherwise specified by using the CMD keyword on the
)BODY statement.

Fields other than the command field can exceed 255 characters.

Fields are ended by the attribute character of a following field or by the end of
the panel body. A panel with a large number of variables can cause the literal
table to exceed 32K bytes. ISPF issues a message when this occurs. To proceed,
the panel containing the variables must be divided into two or more panels.

All header statements, such as JATTR and)BODY, must be coded starting in
column 1. Statements following the header need not begin in column 1.

At least one attribute must be defined within the panel)BODY section. If the
entire) BODY section is defined as an AREA, (DYNAMIC, SCRL, ...), then that
AREA variable must contain at least one attribute. For example, if the panel
)BODY is defined as a char AREA(DYNAMIC), then there must be at least one
attribute variable defined within the Dynamic Area variable char.

If a section is omitted, the corresponding header statement is also omitted. The
)BODY header can be omitted if all previous sections are omitted, and there is
no need to override the default attribute bytes by using a keyword on the
)BODY statement.

An)END statement is required as the last line of each panel definition. ISPF
ignores any data that appears on lines following the)END statement.

Using Blanks and Comments

The following rules apply to the use of blanks and comment statements:

In the attribute section, the attribute character and all keywords that follow must
be separated by one or more blanks. At least one keyword must follow the
attribute character on the same line. Keywords can be continued on succeeding
lines.

In the action bar choice, initialization, reinitialization, processing, and help
sections, several statements can occur on the same line, separated by one or
more blanks. Statements cannot be split between lines, except that listed items
within parentheses and long strings within quotes can be continued on
succeeding lines (see I‘Eormatting Items in Lists” on page 10d).

One or more blanks can occur on either side of operators such as an equal sign
(=), a not-equal operator (-=), greater-than symbol (>), and not-greater-than
operator (—>). Embedded blanks cannot occur in double-character operators such
as the not-equal operator.

For example: - = is invalid.

One or more blanks can occur on either side of parentheses, except that a blank
cannot follow the right parenthesis that begins a header statement. The
following are all equivalent:

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

INTENS (LOW)
INTENS (LOW)
INTENS (LOW)

One or more blanks must follow the closing parenthesis to separate it from the
next statement or keyword.

¢ Comments can be coded in the action bar choice, attribute, initialization,
reinitialization, processing, ccsid, panel, point-and-shoot, list, and help sections.
Comments must be enclosed with the comment delimiters, /* and */. The
comment must be the last item on the line. Additional keywords or statements
that follow the comment on the same line are ignored. A comment cannot be
continued on the next line. For multi-line comments, the comment delimiters
must be used on each line.

* Blank lines can occur anywhere within the action bar choice, attribute,
initialization, reinitialization, processing, and help sections.

Formatting Items in Lists
The following rules apply to items in lists:

* Listed items within parentheses can be separated by commas or one or more
blanks. This rule also applies to paired values within a TRANS statement. For
example, the following are equivalent:

TRANS (8XYZ 1,A 2,B 3,C MSG=xxxx)
TRANS (&XYZ 1 A 2 B 3 C MSG=xxxx)
TRANS (&XYZ, 1 , A, 2, B, 3, C, MSG=xxxx)

* Null items within a list are treated as blank items. For example, the following
are equivalent:

TRANS (&XXX N,' ', Y,YES, =*,' ')
TRANS (&XXX N,, Y,YES, =*,)

* Listed items within parentheses can be continued on one or more lines. For

example:

TRANS (&CASE 1,'THIS IS THE VALUE FOR CASE 1'
2,'THIS IS THE VALUE FOR CASE 2')

Literal values within a list can be split between lines by coding a plus sign (+) as
the last character on each line that is to be continued. That is, the plus sign is
used as a continuation character. For example:

TRANS (&CASE 1,' THIS IS THE VALUE +

FOR CASE 1' 2,'THIS IS THE +
VALUE FOR CASE 2')

Using Variables and Literal Expressions in Text Fields
The following rules apply to literals and variables in text fields:

* A literal is a character string not beginning with an ampersand or period. A
literal value can be enclosed in single quotes (”'). It must be enclosed in single
quotes if it begins with a single ampersand or a period, or if it contains any of
the following special characters:

Blank < (+ |) 5~ -, >: =

A literal can contain substitutable variables, consisting of a dialog variable name
preceded by an ampersand (&). The name and ampersand are replaced with the
value of the variable, with trailing blanks stripped, before the statement is
processed. Trailing blanks are stripped from the variable before the replacement
is done. A double ampersand can be used to specify a literal character string
starting with, or containing, an ampersand.

Chapter 5. Panel Definition Statement Guide 109

110

In the DBCS environment, a mixed EBCDIC/DBCS literal can be specified as
follows:

eeee[DBDBDBDB] eeeeee [DBDBDBDBDBDB]

In this example, e represents an EBCDIC character and DB represents a
double-byte character. The brackets [and] represent shift-out and shift-in
characters, in which DBCS subfields must be enclosed. These appear as blanks
when displayed.

If a mixed literal contains two DBCS subfields, and

— the last character of the first subfield is a shift-in that terminates a DBCS
subfield, and

— the first character of the second subfield is a shift-out that begins a DBCS
subfield,

the shift-in and shift-out character pair is eliminated.

In the panel)BODY or)AREA section, a variable can appear within a text field.
In the action bar choice, initialization, reinitialization, processing, and help
sections, a variable can appear within a literal value. In all three sections, the
variable name and the preceding ampersand are replaced with the value of the
corresponding dialog variable. Trailing blanks are stripped from the variable
before the replacement is done. For example, if variable V has the value ABC
then:

'F & G' yields 'F ABC G'

'F,&V,G' yields 'F,ABC,G'

A period (.) at the end of a variable name causes concatenation with the
character string following the variable. For example, if &V has the value ABC,
then:

'&V.LMN' yields 'ABCLMN'

A single ampersand followed by a blank or by a line-end is interpreted as a
literal ampersand character, not the beginning of a substitutable variable. An
ampersand followed by a nonblank is interpreted as the beginning of a
substitutable variable.

A double ampersand can be used to produce a character string starting with, or
containing, an ampersand. The double-character rule also applies to single
quotes within literal values, if the literal is enclosed within delimiting single
quotes, and to a period if it immediately follows a variable name. That is:
&& yields &
"' yields ' within delimiting single quotes
yields . immediately following a variable name

Note: To add another layer of quotes, you must double the number of quotes
used in the previous layer. For example:

'one 0''ne' yields one o'ne

"two t''"'wo' yields two t''wo
When variable substitution occurs within a text field in the panel body, left or
right shifting extends to the end of the field, defined by the occurrence of the
next attribute byte. For left shifting, the right-most character in the field is
replicated (shifted in), provided it is a special (non-alphanumeric) character. For
example:

%DATA SET NAME: &DSNAME -------mmmcmmmmmmemeee 5

Assuming that the value of variable DSNAME is greater than 7 characters, the
dashes are pushed to the right, up to the next start of field (the next % in this

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

example). If the value of DSNAME is fewer than 7 characters, additional dashes
are pulled in from the right. Fields defined in a scrollable area end at the end of
the line where their definition starts. They will not wrap to the next line.

Validating DBCS Strings
ISPF validates DBCS data as follows:

All DBCS output values are checked to determine whether they contain valid
16-bit DBCS codes. If an invalid code is found, it is replaced with the
hexadecimal value 4195.

The lengths of DBCS subfields in FORMAT(MIX) fields, and all FORMAT(DBCS)
fields, are checked for an even number of bytes. If an exception occurs, the data
is displayed in EBCDIC format.

Split-screen or a floating command line can result in a DBCS field or subfield
being divided. If this occurs in the middle of a DBCS character, the remainder of
the byte is displayed as a blank and is protected.

If the division of a DBCS subfield results in no divided DBCS characters, but the
shift-in character is separated, the subfield is displayed as a DBCS field and is
protected. However, if a divided DBCS character results, the remainder of the
byte is displayed as a blank and is protected, and the remainder of the subfield
is displayed as a DBCS field and is protected.

If a DBCS field split results in the division of a DBCS character, the remainder of
the byte is displayed as a blank and is protected.

In all of the previous cases, no message is issued to the user.

Special Requirements for Defining Certain Panels

Special requirements exist for defining the following types of panels:

Menus
Help tutorials. Refer to P’Chnpfpr 7 _1SPE Hp]p and Tiitorial Panels” on page 279

Table displays
Panels containing dynamic areas
Panels containing a graphic area.

Defining Menus
A menu, also called a selection panel ([Eigure 40 on page 112), is a special type of

panel.

Chapter 5. Panel Definition Statement Guide 111

112

=] EE

ISPF Master Application Menu

1 Sample 1 Sample application 1 Userid . : USERID
2 . (Description for option 2 Time . . : 13:41
3. (Description for option 3) Terminal : 3278

4 (Description for option 4) PF keys : 12

5. (Description for option 5) Screen . : 1

X Exit Terminate ISPF using Tist/log defaults Language : ENGLISH

Appl ID : ISR
Release : ISPF

Enter END command to terminate application

5655-042 (C) Copyright IBM CORP 1982, 1996

Licensed Materials - Property of IBM 5645-001, 5655-042 (C) Copyright IBM
Corp. 1980, 1996. A1l rights reserved. US Government Users Restricted Rights
- Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Option ===>
Fl=Help F2=Split F3=Exit F9=Swap F10=Actions Fl2=Cancel

Figure 40. Example of a Menu (ISP@MSTR)

The sections that can be used in a menu definition are the same as those that can
be used in other panel definitions. However, a menu requires a processing section
in addition to the body section. The processing section must be in a special format.

Menu definitions are processed by the SELECT service. A menu must have an
input field to allow users to enter selection options. Generally, this is the command
field, and is the first input field on the panel. This field should be named ZCMD to
be consistent with the field name used in this manual.

Besides ZCMD, a menu can have input fields to set up dialog variables needed by
that application. Any variables other than ZCMD and ZSEL (or OPT and SEL) that
are set from a menu are automatically stored in the shared variable pool.

Variables from the shared pool, including system variables, can also be displayed
on a menu to provide information to users.

The required processing section must provide for the variable ZCMD to be
truncated at the first period and then translated to a character string. The results
must be stored in a variable named ZSEL or SEL. SEL is provided only for
compatibility with the System Productivity Facility (SPF). Use of ZSEL is
recommended.

The processing section of a menu is in the following general format:

)PROC
&ZSEL = TRANS(TRUNC(&ZCMD,'.")
value, 'string'
value, 'string'

value, 'string'

* I?I)

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

The maximum length for ZSEL is 80 characters. If ZSEL is assigned a string longer
than 80 characters, the string is truncated.

The ZCMD variable is truncated prior to translation to allow users to bypass one
or more intermediate menus. For example, 1.2 means primary option 1, suboption
2. This is generally called a nested option. ZCMD is automatically stored,
untranslated, as entered. When the SELECT service discovers that variable ZCMD
contains a period, it causes the next lower-level menu to be selected with an initial
option of everything following the first period. As long as the initial option is
nonblank, the lower-level menu is processed in the normal fashion but is not
displayed to the user.

Each value is one of the options that can be entered on the menu. Each string
contains selection keywords indicating the action to occur. The selection keywords
are:

'"PANEL (pn1-name) [NEWAPPL [(appl-id)]

[PASSLIB]] | [NEWPOOL] [ADDPOP] [SUSPEND] [SCRNAME]'
' CMD (command) [NEWAPPL [(appl-id)] [PASSLIB]]|[NEWPOOL] [SUSPEND]

[NOCHECK] [LANG(APL|CREX)]

[MODE (LINE | FSCR)]

[BARRIER]

[NEST]

[SCRNAME] '

'PGM(prog-name) [PARM(parameters)]
[NEWAPPL [(appl-id)] [PASSLIB]]|[NEWPOOL] [SUSPEND]
[NOCHECK]
[MODE (LINE|FSCR)]
[SCRNAME] '
"WSCMD (workstation-command)
[MODAL |MODELESS]
[WSDIR(DIR)]
[MAX|MIN]
[VIS|INVIS]!

'"WSCMDV (var_name)
[MODAL |MODELESS]
[WSDIR(DIR)]
[MAX |MIN]
[VIS|INVIS]®
EXIT

Except for EXIT, each string of keywords must be enclosed in single quotes
because it contains parentheses, and sometimes blanks.

The following selection keywords are the same as those that can be specified for
the SELECT service.

PANEL (panel-name)
CMD(command) [LANG(APL | CREX)] [MODE(LINE | FSCR)] [BARRIER] [NEST]
PGM(program-name) [MODE(LINE | FSCR)] PARM(parameters)

[NEWAPPL[(application-id)] [PASSLIB]] | [NEWPOOL] [SUSPEND]
[SCRNAME(screen_name)]

WSCMD(workstation-command) [MODAL | MODELESS] [WSDIR(DIR)]
[MAX | MIN] [VIS | INVIS]

Chapter 5. Panel Definition Statement Guide 113

114

WSCMDV(var_name) [MODAL | MODELESS] [WSDIR(DIR)] [MAX | MIN]
[VIS | INVIS]

The PANEL keyword, for example, is used to specify the name of a lower-level
menu to be displayed. The CMD and PGM keywords are used to invoke a dialog
function coded in a command procedure or programming language, respectively.
NOCHECK, MODE, and EXIT are described following.

NOCHECK Keyword

Normally, nested options are allowed only when each component of the option (up
to, but not including the last component) specifies a lower-level menu. For
example, given the following ZSEL keywords on a selection panel definition

&ZSEL = TRANS (TRUNC(&ZCMD,"'.")
1, 'PANEL(DEF)'

8, 'PGM(ABC)"
9, 'PGM(XYZ)"

A user can enter 1.x as a selection. This selection would be accepted by ISPF.
However, if the developer wants to allow a user to enter a nested option that
selects a dialog function, in this case 8.x or 9.x, the developer specifies the
NOCHECK keyword as in the following example:

&ZSEL = TRANS (TRUNC(&ZCMD,'.")
1, 'PANEL(DEF)"

8,.'PGM(ABC) NOCHECK'
9, 'PGM(XYZ) NOCHECK'

The NOCHECK keyword specifies that normal checking for validity is suspended.
It is the responsibility of the dialog function to interpret the meaning of the
lower-level options. To allow this, the remaining options, those to the right of the
first period, are usually passed to the dialog function through any appropriate
variable that has been set equal to the .TRAIL panel control variable in the menu
definition.

Example:

&ZSEL = TRANS (TRUNC (&zCMD, '.')
1, 'PANEL(DEF)"
8, 'PGM(ABC) NOCHECK'
9, 'PGM(XYZ) NOCHECK'

&NEXTOPT = .TRAIL

In this example, variable NEXTOPT contains the remainder of the TRUNC
operation. If the user enters 8.5.2, program ABC is invoked and NEXTOPT is set
to 5.2. If the user enters 9.7, program XYZ is invoked and NEXTOPT is set to 7.
Since variable NEXTOPT is unknown to the SELECT service, it is automatically
stored in the shared variable pool, where it can be accessed by the dialog function.

When the NOCHECK keyword is specified, a return code of 20 from the dialog
function indicates that the remaining options are invalid. If return code 20 is
passed back from the function, an invalid option message is displayed by ISPE.

MODE Keyword
You can use the MODE keyword, with either the LINE or the FSCR option, on a
SELECT service request to control whether ISPF enters line mode or full-screen

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

mode when a TSO command or dialog program is invoked. This eliminates the
need to control line mode by prefixing TSO commands with a percent sign.

EXIT Keyword

The EXIT keyword, if used, applies only to a primary option menu. It terminates
ISPE, using defaults for list/log data set processing. EXIT need not be enclosed in
single quotes.

Blank or Invalid Options (“ or *,*?’)

If you use a blank * ” for the value (ZCMD variable is blank), use a blank as the
string. This causes the SELECT service to redisplay the menu. For primary option
menus, the menu is redisplayed without a message. For lower-level menus, an
enter option message is displayed if the option field was left blank.

If you use an asterisk (*) for the value, indicating an invalid option was entered,
use a question mark (?) as the string. This causes the SELECT service to redisplay
the menu with an invalid option message.

Defining Primary Option Menus

A primary option menu is a selection panel that has special significance in terms
of the way the RETURN command operates, and in terms of the way a jump
function, an option number preceded by an equal sign, works. One type of primary
option menu is the master application menu.

The first menu displayed when ISPF is invoked is usually treated as a primary
option menu. For example, if ISPF is invoked with:

ISPSTART PANEL(XYZTOP)
panel XYZTOP is treated as a primary option menu.

Similarly, if ISPF is invoked with:

ISPSTART CMD(XYZ) or
ISPSTART PGM(XYZ)

and dialog XYZ subsequently issues:
SELECT PANEL(XYZTOP)

panel XYZTOP is treated as a primary option menu because it is the first invoked
menu.

It is possible to write a dialog with no primary option menu by setting the variable
ZPRIM to NO on the first selection panel, panel XYZTOP in this example:

)INIT
&ZPRIM = NO

In general, this approach is not recommended because the RETURN command
then causes an immediate exit from the dialog, which can be confusing to the user.

A dialog can have lower-level (nested) primary option menus. This technique is
implemented by setting variable ZPRIM to YES on a lower-level selection panel:

JINIT
&ZPRIM = YES

Nested primary option menus should be used sparingly, since they can confuse the

user. It is recommended that there be only one primary option menu per major
application.

Chapter 5. Panel Definition Statement Guide 115

116

Specifying the Next Menu to Display
ISPF allows the display of menus that are arranged in a hierarchy. The path

through the hierarchy is automatically preserved as the user selects options from
the various menus. As the user moves back up through the hierarchy, the menus
are redisplayed in reverse sequence from which they were selected. While this is
the standard mode of operation, it can be overridden. A developer can specify an
alternative mode of menu processing called explicit chain mode. In this mode, the
parent menu is specified explicitly in a system variable named ZPARENT. This
variable can be set in a panel definition or in a dialog function. It has the following
effect:

* From a menu, ZPARENT specifies the name of the next menu to be displayed
when the user enters the END command. A menu that specifies itself as the
parent is interpreted as a primary option menu. The RETURN command stops at
that menu.

* From a function, ZPARENT specifies the name of the next menu to be displayed
when the function completes execution. If a function is invoked from another
function by the SELECT service, the lower-level function can set ZPARENT.
Upon completion of the lower-level function, the higher-level function resumes
execution. The setting of ZPARENT does not take effect until the higher-level
function, the one originally invoked from a menu, completes execution.

Notes:

1. A value can be stored in ZPARENT in a function, or it can be stored in the
)INIT,)REINIT,)PROC, or)BODY section of a panel.

2. The value in ZPARENT takes effect only after display of a selection panel when
the user enters the END command.

3. When the ZPARENT variable is set from a dialog function, it must be explicitly
copied to the shared pool, using VPUT, to ensure that ISPF still has access to it
after the function completes.

4. Once the ZPARENT variable is set:
* The hierarchy of menus traversed by the user is not preserved by ISPF.

* The NEWAPPL and NEWPOOL selection keywords are inoperable (ignored)
while the dialog is in explicit chain mode.

5. The ZPARENT variable is automatically reset to blank by ISPF each time it is
used. If the dialog does not continue to set ZPARENT, ISPF resumes normal
mode. The hierarchy of menus, if any, up to the point at which explicit chain
mode was started is then restored.

6. Generally, a dialog should use either explicit chain mode or hierarchical
chaining, the standard mode. Chaining should not be mixed. If they are mixed,
a function that sets ZPARENT should do so only after completion of any
hierarchical dialog that it invokes. For example, the setting of ZPARENT should
be the last thing the function does before returning control. Otherwise, results
are unpredictable.

7. The ZPRIM variable is not applicable and is ignored when operating in explicit
chain mode.

Example of a Master Application Menu

A master application menu, named ISP@MSTR (See Eigure 40 on page 112, is
distributed with ISPF as part of the panel library. This menu can be used, if

desired, to allow selection of the various applications available at an installation.

If used, the master menu should be the first menu displayed when the user logs
on. It can be displayed automatically by including the following command in the
user’s TSO LOGON procedure:

z/0OS VIR2.0 ISPF Dialog Developer’s Guide and Reference

ISPSTART [PANEL(ISP@MSTR)]

When no keywords are specified on the ISPSTART command, PANEL (ISP@MSTR)
is assumed.

The master application menu is generated from a DTL source file (w
). The menu selections are enabled for point-and-shoot selection.

The master application menu)INIT,)PROC, and)PNTS sections are included in
to illustrate some of the special menu statement formats discussed above.

)INIT
-ZVARS = '(ZCMD ZUSER ZTIME ZTERM ZKEYS ZSCREEN ZLANG ZAPPLID ZENVIR)'
“HELP = ISP00005

&ZPRIM = YES
&ZPRIM = YES /* This is a primary option menu */
IF (&ZLOGO = 'YES') /* OL5A*/
IF (&ZSPLIT = 'NO') /* Not in split screen OL5A*/
IF (&ZCMD = &Z) /* No command pending OL5A*/
IF (&ZLOGOPAN = 'DONE') /* No logo displayed yet OL5A*/
.MSG = ISPL0999 /* Set logo information @L5A%/
.RESP = ENTER /* Simulate enter OL5A*/
&ZLOGOPAN = 'DONE' /= OL5A*/
8ZCLEAN = 'NO' /x @L5Ax/
IF (&ZCMD = &7) /* Command pending @L5A*/
&ZLOGOPAN = 'DONE' /* OL5A*/
VPUT (ZLOGOPAN) SHARED /= @L5A*/
IF (&ZSPLIT = 'YES') /* In split screen @V5A%/
&ZLOGOPAN = 'DONE'
)PROC
/* This in a GML based panel generated by ISPDTLC. */
/* */
/* Make changes by updating the GML source file */
/* and reconverting ISP@MSTR. */

&ZSEL = TRANS (TRUNC (&ZCMD,'.")
1, 'PANEL (ISP@PRIM) SCRNAME (PRIM)'
X,EXIT

*, 7))
&ZTRAIL=;TRAIL
)PNTS
FIELD(ZPSO1001) VAR(ZCMD) VAL(1)
FIELD(ZPS01002) VAR(ZCMD) VAL(2)
FIELD(ZPSO1003) VAR(ZCMD) VAL(3)
FIELD(ZPS01004) VAR(ZCMD) VAL(4)
FIELD(ZPS01005) VAR(ZCMD) VAL(5)
FIELD(ZPS01006) VAR(ZCMD) VAL(X)
FIELD(ZPS00001) VAR(ZCMD) VAL (END)
)END
/* 5655-042 (C) COPYRIGHT IBM CORP 1982, 1996 */

Figure 41. Master Application Menu Definition

The following figure shows the DTL source for panel ISP@MSTR. All of the
translatable text is defined with ENTITY tags and is placed at the beginning of the
file. Special comments bordered by a DTL comment line:

<\-- ##########HFFHFF R A A SRS AR RS AR A A A A A A A A A >

identify the places where the source file can be modified and provide an
explanation for including additional options.

Chapter 5. Panel Definition Statement Guide 117

<l-- ISR@MSTR selection menu -->
<!doctype dm system(
<IENTITY ispzmstr system -- common logic file imbed -->

<l-- Start of translatable panel text section -->
<l-- text delimited by " is to be translated -—>
<l-- text should end with '">' as shown. -->
<l-- the '">' can be moved to the right for text expansion -->
<!-- panel title text follows - maximum length = 74 bytes -->

<IENTITY panel_title
"ISPF Master Application Menu">

<!-- choice selection text entries follow -—>
<!-- choice text for this panel consists of 2 parts: -->
<l-- part 1 - point and shoot - primary description -=>
<!-- part 2 - additional descriptive text -->
<!-- if combined Tength of text for part 1 plus part 2 exceeds -->

<l-- 54 bytes, the part 2 text will be folded into multiple Tines -->

<!-- part 1 - point and shoot - primary description follows -->
<!-- pad short text with blanks, aligning the ending quote mark -->
<!-- all text strings must be the same length, including blanks -->
<l-- #######HRAA AR A AR AR AR AR AR AR A AR AR AR AR AR A - >
<!-- To add options 2, 3, 4, or 5 to this panel: -=>
<!-- - Replace the text below for "choice_n_pnts" -->
<l-- (where "n" is the option number) -->
<l-- with the point-and-shoot key identifying option text. -=>
<l-- -—>
<l-- To add new options to this panel: -=>
<l-- - repeat the text below for "choice n pnts" -->
<l-- (where "n" is the option number) -->
<l-- for the new option number and add it to the list -=>
<l-- with the point-and-shoot key identifying option text. -—>
<l-- for example: -=>
<l-- <IENTITY choice 6 _pnts "New option 6"> -->

<U-- #H#######EFHHHR R A AR AR R A AR AR R R A AR AR R A AR AR AR >
<IENTITY choice_1 pnts "Sample 1 ">
<IENTITY choice_2 pnts ". ">
<IENTITY choice_3 pnts ". ">
<IENTITY choice_4 pnts ". ">
<IENTITY choice_5_pnts ". ">
<IENTITY choice_X pnts "Exit ">

Figure 42. Master Application Menu DTL Source (Part 1 of 4)

118 2z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

<!-- part 2 - additional descriptive text -->
<l-- #H####AFEH AR AR AR A A A R A - >

<!-- To add options 2, 3, 4, or 5 to this panel: -=>
<l-- - Replace the text below for "choice_n_text" -->
<l-- (where "n" is the option number) -->
<l-- with the additional option description text. -->
<l-- -—
<!-- To add new options to this panel: -=>
<!-- - repeat the text below for "choice_n_text" -->
<l-- (where "n" is the option number) -->
<l-- for the new option number and add it to the Tist -->
<l-- with the additional option description text. -->
<l-- for example: --=>
<l-- <IENTITY choice_6_text "(Description for option 6) ">-->

SEEN i Idiiididdddddataaddddtataddddddadadddddtaaddddddadasites
<IENTITY choice_1 text
"Sample application 1 >
<IENTITY choice_2_text
"(Description for option 2) ">
<IENTITY choice_3_text
"(Description for option 3) ">
<IENTITY choice_4 text
"(Description for option 4) ">
<IENTITY choice 5 text
"(Description for option 5) ">
<IENTITY choice_X_text
"Terminate ISPF using Tist/log defaults">

<!-- Status area Tabels - maximum text length = 10 bytes -->

<IENTITY status_userid "Userid . :">
<IENTITY status_time "Time . . :">
<IENTITY status_term "Terminal :">
<IENTITY status_pfkeys "Pf keys :">
<IENTITY status_scrnum "Screen . :">
<IENTITY status_lang "Language :">
<IENTITY status_appl "Appl ID :">
<IENTITY status_rel "Release :">

<!-- Generated panel comments - maximum text length = 66 bytes -->
<!IENTITY panel_cmntl
"This in a GML based panel generated by ISPDTLC.">
<!ENTITY panel_cmnt2
n II>
<IENTITY panel_cmnt3
"Make changes by updating the GML source file ">
<!ENTITY panel_cmnté4

"and reconverting ISPGMSTR. >
<!-- panel instruction text line - maximum text length = 78 bytes -->
<!-- panel instruction entities will be concatenated -->

<IENTITY panel_instruct_1

"Enter <ps var=zcmd value=END csrgrp=99>END</ps> ">
<!ENTITY panel_instruct_2

"command to terminate application">

<l-- End of translatable panel text section -->
)> <!-- DO NOT DELETE THIS LINE -->

Figure 42. Master Application Menu DTL Source (Part 2 of 4)

Chapter 5. Panel Definition Statement Guide

119

<varclass name=vcc type='char 80'>
<xTatl format=upper>
</xlatl>

<varclass name=vco type='char 7'>

<varlist>
<vardcl name=zcmd varclass=vcc>
<vardcl name=zuser varclass=vco>
<vardcl name=ztime varclass=vco>
</varlist>
<copyr>5655-042 (C) COPYRIGHT IBM CORP 1982, 1996
<panel name=isp@mstr help=isp00005 padc=user keylist=isrnsab applid=isr
width=80 depth=24 menu prime window=no>&panel_title;

<cmdarea noinit>
<area depth=8 extend=force width=59 dir=horiz>

<l-- selection options follow - Teft side of panel -->
<selfld type=menu selwidth=* trail=ztrail fchoice=1 entwidth=1
tsize=12>

<choice> <ps var=zcmd value=1 csrgrp=99>
&choice 1 pnts</ps>;
&choice_1 text;
<action run=isp@prim type=panel scrname=prim>
<l-- #######HHAAH AR A AR AR AR AR A AR AR A AR AR AR A - >

<!-- To add options 2, 3, 4, or 5 to this panel: -->
<!-- add a <ACTION> tag provide the selection -—>
<l-- information for the generated ZSEL statement. -—>
<l-- -—>
<l-- <action run=newoptn2 type=panel scrname=opt2> -=>
<l-- where: -->
<l-- run=newoptn2 - provides the name of the panel, -->
<l-- pgm, cmd, wscmd, wscmdv -->
<l-- type=panel - provides the selection choice: -—>
<l-- panel, pgm, cmd, wscmd, wscmdv -
<!-- scrname=opt2 - provides an optional screen name -->

<l-- #######HRAAH AR A AR AR AR AR AR AR A AR AR AR R A AR AR A - >

<choice> <ps var=zcmd value=2 csrgrp=99>
&choice_2_pnts;</ps>
&choice_2_text;

<choice> <ps var=zcmd value=3 csrgrp=99>
&choice_3 pnts;</ps>
&choice_3_text;

<choice> <ps var=zcmd value=4 csrgrp=99>
&choice 4 pnts;</ps>
&choice_4_text;

<choice> <ps var=zcmd value=5 csrgrp=99>
&choice_5_pnts;</ps>
&choice 5 text;

Figure 42. Master Application Menu DTL Source (Part 3 of 4)

120 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

<\-- ########FFHF R A A - >

<!-- To add new options to this panel: ===
<l-- - add a new <choice> tag to this Tist following the -->
<l-- pattern of the <choice> tags above. -=>
<l-- a new <ACTION> tag is required to provide the selection -->
<l-- information for the generated ZSEL statement. -=>
<l-- -—
<l-- <choice> <ps var=zcmd value=6 csrgrp=99> -=>
<l-- &choice_6_pnts;</ps> -->
<l-- &choice _6_text; -->
<l-- <action run=newoptn6 type=panel scrname=opt6> -->
<l-- where: -->
<l-- run=newoptn6 - provides the name of the panel, -->
<l-- pgm, cmd, wscmd, wscmdv -=>
<l-- type=panel - provides the selection choice: -->
<l-- panel, pgm, cmd, wscmd, wscmdv -->
<l-- scrname=opt6 - provides an optional screen name -->

NEEW fi2ddsiddsiiddsaddsaddtaddssddtasddaddtaadiadadadadaadiassstis
<choice selchar=X> <ps var=zcmd value=X csrgrp=99>
&choice_X_pnts;</ps>
&choice_X_text;
<action run=exit type=exit>
<comment type=proc>&panel_cmntl;
<comment type=proc>&panel_cmnt2;
<comment type=proc>&panel_cmnt3;
<comment type=proc>&panel_cmnté4;
</selfld>
</area>
<l-- right side of option menu panel follows, status area -->
<area dir=horiz>
<region dir = vert>
<divider>
<dtacol pmtwidth=10 entwidth=8>
<dtafld datavar=ZUSER usage=out> &status_userid;
<dtafld datavar=ZTIME usage=out> &status_time;
<dtafld datavar=ZTERM usage=out> &status_term;
<dtafld datavar=ZKEYS usage=out> &status_pfkeys;
<dtafld datavar=ZSCREEN usage=out>&status_scrnum;
<dtafld datavar=ZLANG usage=out> &status_lang;
<dtafld datavar=ZAPPLID usage=out>&status_appl;
<dtafld datavar=ZENVIR usage=out> &status_rel;
</dtacol>
</region

<!-- panel logic file imbed -->
&ispzmstr;
</area>
<region>
<info width=78>
<lines>
&panel_instruct_l;&panel_instruct_2;
</Tines>
<p>5655-042 (C) COPYRIGHT IBM CORP 1982, 1996
</info>
</region>
</panel>

Figure 42. Master Application Menu DTL Source (Part 4 of 4)

To add a new application to the master menu, copy the ISP@MSTR DTL source file
from the GML library to a private data set. Locate the sections of code within the
DTL comment lines:

<\-- ########FFHFF R A A SR E A A A A A A - >

and modify the DTL source code to:

Chapter 5. Panel Definition Statement Guide 121

122

1. Define the point-and-shoot option text
2. Define the option description text
3. Add an <ACTION> tag for each additional option.

Refer to the ISPF Dialog Tag Language Guide and Reference for a description of the
Dialog Tag Language syntax and information about compiling DTL panels.

Compile the modified DTL source file using the ISPDTLC command, and review
the generated panel to confirm that your changes have been processed.

Example of a Primary Optlon Menu
shows a primary option menu panel DTL source file
def1n1t10n This is the sample primary option menu ISP@PRIM, distributed with

ISPE. &ZPRIM=YES specifies that this panel is a primary option menu.

The primary option menu)INIT,)PROC, and)PNTS sections are included in
to illustrate some of the special menu statement formats

discussed above.

The initialization section sets the control variable .HELP to the name of a tutorial
page to be displayed if a user enters the HELP command from this menu. It also
initializes two system variables that specify the tutorial table of contents and first
index page.

The processing section specifies the action to be taken for each option entered by
the user. If option 0 is selected, program ISPISM is invoked. If option 1 is selected,
panel ISPUCMA is displayed; and so on.

For the tutorial, program ISPTUTOR is invoked and passed a parameter, ISP0O0000,
which ISPTUTOR interprets as the name of the first panel to be displayed. Panel
ISP0000O is the first panel in the tutorial for ISPF. Other applications should pass
the name of the first tutorial page for that application.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

YINIT

<ZVARS = '(ZCMD ZUSER ZTIME ZTERM ZKEYS ZSCREEN ZLANG ZAPPLID ZENVIR)'
-HELP = ISP00003

&ZPRIM = YES

&ZHTOP = ISPO0O003 /* Tutorial table of contents for this appl=*/
&ZHINDEX = ISP91000 /* Tutorial index - 1st page for this appl */
VPUT (ZHTOP,ZHINDEX) PROFILE

)PROC

/* This in a GML based panel generated by ISPDTLC. */
/* */
/* Make changes by updating the GML source file */
/* and reconverting ISP@PRIM. */

&ZSEL = TRANS (TRUNC (&ZCMD,'.")
0, 'PGM(ISPISM) SCRNAME(SETTINGS)'
1, 'PANEL(ISPUCMA) SCRNAME (CMDS) "
2,'PGM(ISPPREP) NEWAPPL SCRNAME (PREP)'
3,'CMD(ISPDTLC) SCRNAME (DTLC)"
7,'PGM(ISPYXDR) PARM(&ZTAPPLID) SCRNAME(DTEST) NOCHECK'
T,'PGM(ISPTUTOR) PARM(ISP00000) SCRNAME(TUTOR)'
X,EXIT

*’I?I)
&ZTRAIL=TRAIL
)PNTS
FIELD(ZPS01001) VAR(ZCMD) VAL(0)
FIELD(ZPS01002) VAR(ZCMD) VAL(1)
FIELD(ZPS01003) VAR(ZCMD) VAL(2)
FIELD(ZPS01004) VAR(ZCMD) VAL(3)
FIELD(ZPSO1005) VAR(ZCMD) VAL(4)
FIELD(ZPS01006) VAR(ZCMD) VAL(5)
FIELD(ZPS01007) VAR(ZCMD) VAL(7)
FIELD(ZPS01008) VAR(ZCMD) VAL(T)
FIELD(ZPSO1009) VAR(ZCMD) VAL(X)
FIELD(ZPS00001) VAR(ZCMD) VAL (END)
)END

Figure 43. ISPF Primary Option Menu Definition

The following figure shows the DTL source for panel ISP@PRIM. All of the
translatable text is defined with ENTITY tags and is placed at the beginning of the
file. Special comments bordered by a DTL comment line:

<\-- ########FHHFFHAHE R A A A A A A A A - >

identify the places where the source file can be modified and provide an
explanation for including additional options.

Chapter 5. Panel Definition Statement Guide 123

124

<!'-- ISRGPRIM selection menu -->

<!'doctype dm system(
<I'ENTITY ispzprim system -- common logic file imbed -->

<l'-- Start of translatable panel text section -=>
<!'-- text delimited by " is to be translated -->
<!'-- text should end with '">' as shown. -=>
<l'-- the '">' can be moved to the right for text expansion -->
<!'-- panel title text follows - maximum length = 74 bytes -=>

<!'ENTITY panel_title

<!'--
<l'--
<I'--
<!'--
<I'--
<!'--

<!'--
<!'--
<I'--
<!'--
<I'--
<!'--
<!'--
<!'--
<!'--
<I'--
<!'--
<!'--
<!'--
<!'--
<!'--
<!'--
<I'--

"Sample Primary Option Menu">

choice selection text entries follow -->
choice text for this panel consists of 2 parts: -->
part 1 - point and shoot - primary description -->
part 2 - additional descriptive text -->
if combined length of text for part 1 plus part 2 exceeds -->

54 bytes, the part 2 text will be folded into multiple Tines -->

part 1 - point and shoot - primary description follows -->
pad short text with blanks, aligning the ending quote mark -->

all text strings must be the same Tength, including blanks -->
st dsdadddssddtgadisddtadddsdddgadasdiaaddgadadaadittitts

To add options 4, or 5 to this panel: -->
- Replace the text below for "choice n_pnts" -->
(where "n" is the option number) -->

with the point-and-shoot key identifying option text. -—>
-

To add new options to this panel: -->
- repeat the text below for "choice_n_pnts" -->
(where "n" is the option number) -->

for the new option number and add it to the Tist -->
with the point-and-shoot key identifying option text. -—>
for example: -->
<!''"ENTITY choice_8 pnts "New option 8"> -->

ifgdddgadddadddgadataaddaddtadsdgaddaaddadiadadaadaaaddsslis

<I'ENTITY choice_0_pnts "Settings ">
<I'ENTITY choice_1_pnts "Commands ">
<!I'ENTITY choice_2_pnts "ISPPREP ">
<I'ENTITY choice_3_pnts "ISPDTLC ">

<I'ENTITY choice 4 pnts ". >
<I'ENTITY choice_5_pnts ". ">
<!I'ENTITY choice_6_pnts ". ">
<I'ENTITY choice_7_pnts "Dialog Test">
<I'ENTITY choice_T_pnts "Tutorial ">
<I'ENTITY choice X pnts "Exit >

Figure 44. Master Application Menu DTL Source (Part 1 of 6)

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

<!'-- part 2 - additional descriptive text -->
<!U'-- #H#HEAFEFEHR AR R A R A R R - >

<!'-- To
<I'-- -
<I'--
<!'--
<!'--
<!'-- To
<l'-- -
<I'--
<!'--
<I'--
<!'--
<l'--

add options 4, or 5 to this panel: -->
Replace the text below for "choice_n_text" -->
(where "n" is the option number) -—>
with the additional option description text. -->
-——>

add new options to this panel: -->
repeat the text below for "choice_n_text" -->
(where "n" is the option number) -—>
for the new option number and add it to the list -->
with the additional option description text. -->
for example: -->
<!I'ENTITY choice_8 text "(Description for option 8) ">-->

<U' o FHEH A A - >
<I'ENTITY choice_0_text
"Terminal and user parameters">
<I'ENTITY choice_1_text
"Create/change command table ">
<I'ENTITY choice_2_text
"Preprocessed panel utility ">
<I'ENTITY choice_3_text
"ISPF DTL Conversion Utility ">
<I'ENTITY choice_4 text
"(Description for option 4) ">
<I'ENTITY choice 5 text
"(Description for option 5) ">
<I'ENTITY choice_6_text
"(Description for option 6) ">
<I'ENTITY choice_7_text
"Perform dialog testing">
<I'ENTITY choice_T_text
"Display information about this application">
<I'ENTITY choice_X_text
"Terminate ISPF using list/log defaults">

Figure 44. Master Application Menu DTL Source (Part 2 of 6)

Chapter 5. Panel Definition Statement Guide

125

126

<!'-- Status area labels - maximum text length = 10 bytes
<!'ENTITY status_userid "Userid . :">
<I'ENTITY status_time "Time . . :">
<!'ENTITY status_term "Terminal :">
<!'ENTITY status_pfkeys "Pf keys :">
<!'ENTITY status_scrnum "Screen . :">
<I'ENTITY status_lang "Language :">
<!'ENTITY status_appl "Appl ID :">
<I'ENTITY status_rel "Release :">

<!'-- Generated panel comments - maximum text length = 66 bytes
<!'ENTITY panel_cmntl

"This in a GML based panel generated by ISPDTLC.">
<I'ENTITY panel_cmnt2

n II>
<!'ENTITY panel_cmnt3

"Make changes by updating the GML source file ">
<!'ENTITY panel_cmnt4

"and reconverting ISP@PRIM. ">
<!'-- panel instruction text line - maximum text length = 78 bytes
<!'-- panel instruction entities will be concatenated

<!'ENTITY panel_instruct_1

"Enter <ps var=zcmd value=END csrgrp=99>END</ps> ">
<!'ENTITY panel_instruct_2

"command to terminate application">

<!'-- End of translatable panel text section
)> <!'-- DO NOT DELETE THIS LINE -->

Figure 44. Master Application Menu DTL Source (Part 3 of 6)

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

-—>
-

<varclass name=vcc type='char 80'>
<xTatl format=upper>
</xlatl>

<varclass name=vco type='char 7'>

<varlist>
<vardcl name=zcmd varclass=vcc>
<vardcl name=zuser varclass=vco>
<vardcl name=ztime varclass=vco>
</varlist>

<copyr>5655-042 (C) COPYRIGHT IBM CORP 1982, 1996
<panel name=isp@prim help=isp00003 padc=user keylist=isrnsab applid=isr
width=80 depth=24 menu prime window=no>&panel _title;

<cmdarea noinit>
<area depth=11 extend=force width=59 dir=horiz>

<!'-- selection options follow - left side of panel -->
<selfld type=menu selwidth=* trail=ztrail fchoice=0 entwidth=1
tsize=12>

<choice> <ps var=zcmd value=0 csrgrp=99>
&choice 0 pnts;</ps>
&choice_0_text;
<action run=ispism type=pgm scrname=settings>
<choice> <ps var=zcmd value=1 csrgrp=99>
&choice_1 pnts;</ps>
&choice_1_text;
<action run=ispucma type=panel scrname=cmds>
<choice> <ps var=zcmd value=2 csrgrp=99>
&choice 2 pnts;</ps>
&choice_2_text;
<action run=ispprep type=pgm newappl scrname=prep>
<choice> <ps var=zcmd value=3 csrgrp=99>
&choice 3 pnts;</ps>
&choice_3_text;
<action run=ispdtic type=cmd scrname=dtlc>

Figure 44. Master Application Menu DTL Source (Part 4 of 6)

Chapter 5. Panel Definition Statement Guide 127

<U'-- #E##FFFFFEFF AR - >

<!'-- To add options 4, or 5 to this panel: -->
<t'-- add a <ACTION> tag provide the selection -->
<It-- information for the generated ZSEL statement. -->
<!|__ -=>
<I'-- <action run=newoptn4 type=panel scrname=opt4> -->
<!'-- where:run= -->
<I'-- run=newoptn4 - provides the name of the panel, -->
<l'o- pgm, cmd, wscmd, wscmdv -=>
<I'-- type=panel - provides the selection choice: -->
<I'-- panel, pgm, cmd, wscmd, wscmdv -->
<I'-- scrname=opt4 - provides an optional screen name -->

<U'-- #H##FHHEAFH AR AR AR A AR AR A AR R AR RS - >
<choice> <ps var=zcmd value=4 csrgrp=99>
&choice_4 pnts;</ps>
&choice_4_text;
<choice> <ps var=zcmd value=5 csrgrp=99>
&choice 5 pnts;</ps>
&choice 5 text;
<choice hide> <ps var=zcmd value=6 csrgrp=99>
&choice 6 _pnts;</ps>
&choice_6_text;
<choice> <ps var=zcmd value=7 csrgrp=99>
&choice 7 pnts;</ps>
&choice_7_text;
<action run=ispyxdr type=pgm parm=&ZTAPPLID nocheck scrname=dtest>
NREEW 2 dsiddsddidadsadstaddtsaddssadtasddsddtaadigadataadiassss e

<!'-- To add new options to this panel: -->
<!'-- - add a new <choice> tag to this 1ist following the -->
<I'-- pattern of the <choice> tags above. -->
<!'-- a new <ACTION> tag is required to provide the selection -->
<It-- information for the generated ZSEL statement. -->
<!|__ -——>
<l'-- <choice> <ps var=zcmd value=8 csrgrp=99> -->
<I'-- &choice_8 pnts;</ps> -->
<I'-- &choice 8 text; -->
<l'-- <action run=newoptn8 type=panel scrname=opt8> -->
<I'-- where:run= -->
<I'-- run=newoptn8 - provides the name of the panel, -->
<I'_- pgm, cmd, wscmd, wscmdv -—>
<l'-- type=panel - provides the selection choice: -->
<I'-- panel, pgm, cmd, wscmd, wscmdv -=>
<I'-- scrname=opt8 - provides an optional screen name -->

NREEW 2 diiddsidddssddzadstadddsadddaaddaddtadddadddadadaadatiss e
<choice selchar=T> <ps var=zcmd value=T csrgrp=99>
&choice T pnts;</ps>
&choice_T_text;
<action run=isptutor type=pgm parm=ISPO0000 scrname=tutor>
<choice selchar=X> <ps var=zcmd value=X csrgrp=99>
&choice X _pnts;</ps>
&choice_X_text;
<action run=exit type=exit>
<comment type=proc>&panel_cmntl;
<comment type=proc>&panel_cmnt2;
<comment type=proc>&panel_cmnt3;
<comment type=proc>&panel_cmnt4;
</selfld>
</area>

Figure 44. Master Application Menu DTL Source (Part 5 of 6)

128 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

<!'-- right side of option menu panel follows, status area -->
<area dir=horiz>
<region dir = vert>
<divider>
<dtacol pmtwidth=10 entwidth=8>
<dtafld datavar=ZUSER usage=out> &status_userid;
<dtafld datavar=ZTIME usage=out> &status_time;
<dtafld datavar=ZTERM usage=out> &status_term;
<dtafld datavar=ZKEYS usage=out> &status_pfkeys;
<dtafld datavar=ZSCREEN usage=out>&status_scrnum;
<dtafld datavar=ZLANG usage=out> &status_lang;
<dtafld datavar=ZAPPLID usage=out>&status_appl;
<dtafld datavar=ZENVIR usage=out> &status_rel;
</dtacol>
</region

<!'-- panel Togic file imbed -->
&ispzprim;
</area>
<region>
<info width=78>
<lines>
&panel_instruct_l;&panel_instruct_2;
</Tines>
<p>5655-042 (C) COPYRIGHT IBM CORP 1982, 1996
</info>
</region>
</panel>

Figure 44. Master Application Menu DTL Source (Part 6 of 6)

To add a new application to the primary option menu, copy the ISP@PRIM DTL
source file from the GML library to a private data set. Locate the sections of code
within the DTL comment lines:

<\-- ##########HFF S A S S A A A H A A A A A A A A A A A - >

and modify the DTL source code to:

1. Define the point-and-shoot option text

2. Define the option description text

3. Add an <ACTION> tag for each additional option.

Refer to the ISPF Dialog Tag Language Guide and Reference for a description of the
Dialog Tag Language syntax and information about compiling DTL panels.

Compile the modified DTL source file using the ISPDTLC command, and review
the generated panel to confirm that your changes have been processed.

The required input field, ZCMD, appears in the second line of the panel body. It is
followed by a description of the various options.

This menu also has eight variables within text fields at the upper-right corner of
the screen. These reference system variables from the shared variable pool that
display user ID, time, terminal type, number of function keys, screen number,
language, application ID, and ISPF release number.

Defining Table Display Panels

A table display panel is a special panel that is processed by the TBDISPL service.
When it is displayed, it has a fixed (nonscrollable) portion followed by a scrollable

Chapter 5. Panel Definition Statement Guide 129

130

table portion. The fixed portion is defined by the)BODY section in the panel
definition. The scrollable portion is defined by the)MODEL section.

The fixed portion contains the command field and usually the scroll amount field.
It can also include other input fields as well as output fields, action bars, text,
dynamic areas, scrollable areas, and a graphic area.

The scrollable portion is defined by up to eight model lines. These lines describe
how each table row is to be formatted within the scrollable data area. Attribute
characters in the model lines indicate whether each field is protected or
user-modifiable.

If a single model line is specified in the panel definition, each row from the table
corresponds to the format of that line. This results in scrollable data that is in
tabular format. For many applications, it may be useful to define the left-most
column in each line as an input field. The application user can enter a code to be
used by the dialog function to determine the particular processing for that row.

If multiple model lines are specified in the panel definition, each row from the
table corresponds to multiple lines on the screen. If desired, a separator line,
consisting of blanks or dashes, for example, can be specified as the first or last
model line. This format may be useful for address lists or other repetitive data in
which each unit will not fit on a single line.

Each definition using the model lines on the display is known as a model set.

Table Display Vocabulary

This topic defines some terms related to table display. w illustrates those
terms that refer to parts of a TBDISPL display. The two main parts of a TBDISPL
display are the fixed portion and the scrollable portion. The fixed portion contains
the command field and commonly a scroll amount field and a top-row-displayed
indicator. The scrollable portion contains the table information and usually, if the
screen is not filled, a bottom-of-data marker.

4 N

Command Field Top-Row-Displayed Indicator

|

| |
R R N R e N T +
[Population Change ------ ROW 4 OF 10 | Scrol
| Command ==> Scroll ==>PAGE | <----- Amoun t
| | | Field
| This table shows selected metropolitan areas which had a |
| large relative increase in population from 1970 to 1980. | | Fixed
| | | Portion
| Metro area State Change |
| (Percent) | -
| Fort Collins co +66.0 I -
| West Palm Beach fl +64.3 | | Scrollable
| Fort Lauderdale fl +63.6 | | Portion
| Bryan tx +61.5 |
| Reno nv +60.0 I
| Provo ut +58.4 |
| McAllen tx +56.1 I | Bottom-of-
| rrxsssssssssxnsssss BOTTOM OF DATA ***#ssvsvvvsssssssss Data
| | ----* Marker

- /

Figure 45. Parts of a TBDISPL display

auto-selection
The process by which the row specified in the CSRROW parameter or

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

.CSRROW control variable is selected, even if the user did not explicitly
select that row by modifying the corresponding model set displayed on the
screen.

Relevant concepts include: selected row, user-selection, CSRROW
parameter, .CSRROW control variable, AUTOSEL parameter, and
AUTOSEL control variable.

bottom-of-data marker
The low-intensity text that appears after the last displayed row in the last
page of data in a TBDISPL display. If there are no displayed rows, this
marker will be the only information displayed in the scrollable portion.
The text BOTTOM OF DATA, with asterisks on each side, appears after the last
row on a table display. The dialog can define an alternate marker by
assigning text to ZTDMARK.

ISPF uses the + default attribute character for the bottom-of-data marker.
The default attribute characters are %, +, and _. For a description of the
default attribute characters see [Ilsi i ’

. You can change the default attribute characters by using the
DEFAULT keyword on either the)ATTR or)BODY head statement. For
example: DEFAULT (abc) where a, b, and c are the 3 characters that take the
place of %, +, and _, respectively. The default attribute characters are
position-sensitive. Thus, if you change the default character "b” in the
second position of the DEFAULT keyword parameter (ISPF’s default
character is +), it must maintain the characteristics of TYPE(TEXT),
INTENS(LOW), COLOR(BLUE) for the bottom-of-data marker to display
correctly.

Relevant concepts include: system variable ZTDMARK.

command field
A required field in the fixed portion of a TBDISPL display where
commands are entered. The command field can be identified in the panel
definition through use of the CMD parameter on the)BODY statement. If
the CMD parameter is not specified, the first input field is assumed to be
the command field.

Relevant concepts include: system commands, application commands, and
function commands.

dynamic expansion
The process by which a table being displayed is expanded as needed if a
user scrolls beyond the top or bottom of data contained in the table at the
time of the scroll request.

Relevant concepts include: scrolling and TBDISPL.

fixed portion
The nonscrollable portion of a TBDISPL display. That is, the part of the
display that is not affected by the UP or DOWN commands. Note that
both the fixed and scrollable portions are unaffected by the LEFT and
RIGHT commands. The fixed portion is defined by the) BODY section of
the panel definition.

Relevant concepts include: scrollable portion,) BODY section.

model lines
The lines in the)MODEL section of a TBDISPL panel definition, which
form a template, or model, for the scrollable portion of a TBDISPL display.

Relevant concepts include:)MODEL section, model set, scrollable portion.

Chapter 5. Panel Definition Statement Guide 131

132

model set

The lines in the scrollable portion of a TBDISPL display that correspond to
a particular table row. Model sets are created by ISPF by replicating the
model lines in the panel definition and then filling in the fields with
variable and table row information. Each model set on the display
corresponds to a table row. If there are n model lines, where 7 can be from
1 to 8, then each model set is made up of n lines on the display.

Relevant concepts include: model lines, and scrollable portion.

pending END request

The situation that exists when a user has selected more than one row and
has entered the END or RETURN command. The dialog can choose to
ignore the selected rows, or it can process the selected rows in a TBDISPL
series. In the latter case, each call of TBDISPL results in a return code of 8.
When all the selected rows have been processed, the dialog commonly
honors the pending END request by not invoking the TBDISPL service
again.

Relevant concepts include: TBDISPL series, pending scroll request, and
pending selected row.

pending scroll request

The situation that exists when a user has selected one or more rows, and
has entered the UP or DOWN command. After the dialog has processed all
the selected rows, it can invoke TBDISPL without the PANEL and MSG
parameters to display the table and panel and have the pending scroll
request honored. A pending scroll request can also exist when a user has
issued the UP or DOWN command and the dialog is dynamically building
the table. After adding the rows needed to satisfy the scroll request, the
dialog can invoke TBDISPL without the PANEL or MSG parameters and
ISPF will honor the pending scroll request.

Relevant concepts include: TBDISPL series, pending END request, pending
selected row, and controlling the top-row-displayed.

pending selected rows

Occurs when a user has selected more than one row in a single interaction.
Upon return from the TBDISPL display, the CRP is positioned to the first
of the selected rows. The other rows, which remain to be processed, are the
pending selected rows.

Relevant concepts include: selected row, TBDISPL series, pending END
request, pending scroll request, system variable ZTDSELS.

scroll amount field

An optional field in the fixed portion of a TBDISPL display where scroll
amounts, for example, PAGE, HALF, or 10, are entered. If the input field
immediately following the command field is exactly 4 characters long, it is
assumed to be the scroll amount field.

Relevant concepts include: scrolling, and system variables ZSCROLLA and
ZSCROLLN.

scrollable portion

The part of a TBDISPL display defined by the)MODEL section of the
panel definition and made up of model sets. It contains the ISPF table
information. It is affected by the UP and DOWN commands.

Relevant concepts include: fixed portion,)]MODEL section, model lines,
and model sets.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

select field

A field in the scrollable portion where line commands are entered. For
example, a d entered into the select field of a model set can indicate that
the corresponding table row is to be deleted. TBDISPL does not officially
identify any field as a select field. It is up to the dialog to determine the
characteristics or meaning of a select field.

Relevant concepts include: line commands, scrollable portion, model set,
selected row, and user-selection.

selected row

A row in an ISPF table that has been auto-selected or user-selected.

Relevant concepts include: auto-selection, user-selection, model set,
pending selected row, system variable ZTDSELS, POSITION parameter,
and ROWID parameter.

TBDISPL series

A call of the TBDISPL service that results in a display where the user
selects more than one row, followed by calls of the TBDISPL service
without the PANEL and MSG parameters to process the pending selected
TOWS.

Relevant concepts include: pending selected rows, pending END request,
pending scroll request, and system variable ZTDSELS.

top-row-displayed indicator

There are three possible texts for the top-row-displayed indicator:
* ROWx OFy

x is the current row pointer of the top row displayed. y is the total
number of rows in the table.

* ROWxTO z OF y

x is the current row pointer of the top row displayed. z is the row
pointer of the last visible table row. z is calculated as the current row
pointer of the top row displayed plus the number of lines displayed
minus one. y is the total number of rows in the table.

- ROW x FROM y

x is the row pointer of the table row that has met the criteria of the
SCAN. y is the total number of rows in the table.

The text used for the top-row-displayed indicator is determined by the
CUA mode selected and by whether ROWS is set to ALL or SCAN in the
panel model section. is a summary of the CUA mode and
ROWS(ALL) or ROWS(SCAN) combinations and the resulting
top-row-displayed messages. CUA mode of YES is determined by the
presence of a panel statement or by specifying CUA MODE=YES on
Option 0.

Table 5. Text for Top-Row-Displayed Indicator

Top-Row-Displayed

CUA Mode ROWS Message Message ID
YES ALL ROW x TO z OF y 1SPZZ102
YES SCAN ROW x FROM y ISPZ7103
NO ALL ROW x OF y ISPZZ100
NO SCAN ROW x OF y ISPZ7100

Chapter 5. Panel Definition Statement Guide

133

134

The message text appears right-justified on the top line of the display, or
just below the action bar separator line if an action bar is defined. Your
dialog can define an alternate indicator if you assign a message ID to
ZTDMSG. TBDISPL invokes the GETMSG to get the short and long
message text. If a short message is found, it is used as the
top-row-displayed indicator; if not, the long message text is used. In either
case, any variables in the messages are substituted with their current
values. If ZTDMSG does not exist, the long form of message ISPZZ100,
ISPZ7102, or ISPZZ103 is used.

If the model section for a table contains more than one line, it is possible
that the entire model section will not fit on the screen. In this case, the last
rows of the table area are left blank. A partial model section is not
displayed. The only way to display a partial model section is if you
request your function keys to appear over your table display, or if you split
your screen over your table display.

When you specify ROWS(SCAN) in your panel model section, ISPF finds
only enough rows to fill the display, thus providing a performance boost.
Therefore, you cannot know the entire number of table rows that meet
your search criteria without scrolling through the complete table.

When a table is being built dynamically to satisfy scroll requests, you can
make the top-row-displayed indicator reflect the positioning in the logical
table instead of the physical table. See the description of ZTDLTOP and
ZTDLROWS in ISPF Services Guide

Relevant concepts include: system variables ZTDMSG, ZTDTOP, ZTDLTOP,
ZTDROWS, and ZTDLROWS; messages ISPZZ100, ISPZZ101, ISPZZ102,
and ISPZZ103; and controlling the top-row-displayed.

user-selection
The process by which ISPF table rows are chosen or selected for processing
by the user modifying the corresponding model sets on the display. A user
modifies a model set by entering data into that model set. Overtyping a
model set with the same data does not cause the row to be selected.

Relevant concepts include: auto-selection, selected row, model set, and
system variable ZTDSELS.

Requirements for Attribute Section

Attribute characters can be defined for use in the panel body and the model lines.
In the)BODY section, any attribute except EXTEND(ON) and SCROLL(ON) can be
associated with any field or area. In the)MODEL section, any attribute except
those associated with dynamic and graphic areas can be used with any field. That
is, the attributes AREA, EXTEND, SCROLL, USERMOD, and DATAMOD are not
allowed in model lines.

Input and output fields default to CAPS(ON) and JUST(LEFT), in the)BODY
section, but they default to CAPS(OFF) and JUST(ASIS) in the)MODEL section.

An attribute section is required if the model line contains output fields. There is no
default attribute character for output fields.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Requirements for Body Section
The panel body section is required. It contains the nonscrollable data, which is the

command field and, commonly, the scroll amount field. The rules for their
definition are:

Command field (required)
This field must not be longer than 255 characters.

The command field can have any desired name. The position of the
command field can be specified through use of the CMD parameter on the
)BODY statement. If the CMD parameter is not specified, the first input
field is assumed to be the command field.

The command field is used, as on other types of panels, to enter ISPF
commands and application-defined commands, if any. Any commands
entered in this field that are not recognized by ISPF are automatically
stored in the corresponding dialog variable. Upon return from TBDISPL,
the dialog function can interpret this field and take appropriate action. The
ZCMD field is cleared each time a TBDISPL request is received with the
MSG or PANEL parameter. If the TBDISPL request contains a table name
and no other parameters, the ZCMD field contains what was entered on
the previous TBDISPL.

The ISPF commands are system commands, while the application-defined
commands are application commands. The commands processed by the
dialog function are function commands.

Scroll amount field (optional)
If the input field immediately following the command field is exactly 4
characters long, it is assumed to be the scroll amount field.

The field can have any desired name. Its initial value can be set in the
)INIT section of the panel definition to any valid scroll amount.

If no scroll amount field is specified, the system variable ZSCROLLD,
which can be set by a dialog, is used to determine the default scroll
amount. If there is no scroll amount field and ZSCROLLD has not been set,
PAGE is assumed.

When a user enters a scroll request, variables ZSCROLLA and ZSCROLLN
are set. ZSCROLLA contains the value of the scroll amount field (MAX,
CSR, for example). ZSCROLLN contains the number of lines or columns to
scroll, computed from the value in the scroll amount field. For example, if
a dialog is in split-screen mode and if 12 lines are currently visible and a
user requests DOWN HALF, ZSCROLLN contains a ‘6”. The system
variable ZVERB contains the scroll direction, DOWN in this case. If
ZSCROLLA has a value of MAX, the value of ZSCROLLN is not
meaningful.

The following can appear in the) BODY section:
* Action bars

e Text

* Variables within text; for example, &XYZ

* Input fields

* Output fields

* Dynamic areas

* Scrollable areas

* Graphic areas.

Chapter 5. Panel Definition Statement Guide 135

136

Notes:

1. Only one extendable area is allowed on a panel. This includes dynamic,
scrollable, and graphic areas.

2. Graphic areas are not supported when you are running in GUI mode. When
a GRINIT statement is encountered, you will receive a message that panels
with graphics will not be displayed. You may choose to continue. When a
panel with graphics is encountered, you will receive an error message that
the panel cannot be displayed.

If you are running in split-screen mode, the graphic area panel cannot be
displayed on the host session.

If you specified GUISCRD or GUISCRW values on the ISPSTRT invocation
which are different from the actual host screen size, GDDM cannot be
initialized and the GRINIT service will end with a return code of 20.

Requirements for Model Section

The panel body must be followed by a model section. This section begins with a
)JMODEL header statement and is immediately followed by one or more model
lines.

The)MODEL header statement must begin in column 1. The following optional
keywords can be specified on this header:

* CLEAR(var-name,var-name ...)

* ROWS(ALL|SCAN).

The CLEAR keyword identifies the dialog variable names, from the model lines,
that are to be cleared to blank before each row in the table is read. Thus, if the
variable is an extension variable in the table, which cannot exist in all rows,
previous values are erased and, thereby, are not repeated in other lines for which
they do not apply.

The ROWS keyword indicates whether all rows from the table are to be displayed,
or whether the table is to be scanned for certain rows to be displayed. The default
is ROWS(ALL), which causes all rows to be displayed. If ROWS(SCAN) is
specified, the dialog must invoke the TBSARG service prior to invoking TBDISPL.
The search argument set up by the TBSARG service is used to scan the table. Only
rows that match the search argument are displayed.

One or more model lines must appear following the)MODEL header statement. A
maximum of eight model lines is allowed. Any attribute except those associated
with dynamic, graphic, or scrollable areas (AREA, EXTEND, SCROLL, USERMOD,
and DATAMOD) can be used with any fields in the model lines. The following can
appear in the)MODEL section:

e Text

* Variable model lines (see below)

* Input fields

* Output fields.

The following cannot appear in the)MODEL section:
* Action bars

* Variables within text

* Dynamic areas

* Graphic areas

* Scrollable areas.

Typically, the first field within the model lines specifies the dialog variable into
which a selection code, entered by a user, will be stored. All remaining names

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

correspond to columns in the table. However, this arrangement is not required.
Any name may or may not correspond to a column in the table, and a selection
code field need not be specified.

Text fields can be specified in the model line. A text attribute character can appear
by itself to terminate the preceding input or output field. Any characters that
appear within a text field in the model line are repeated in each line of the
scrollable data. This includes the letter Z. It is not treated as a variable name if it
occurs in a text field.

Variable model lines can be specified in the panel definition. If a variable, a name
preceded by an ampersand, begins in column 1 of any model line, the value of that
variable defines the model line.

The following rules apply to variable model lines:

* The variable must be the only information on the model line. If any other data is
present, an error results.

* If the value of the variable is greater than the screen width, an error results.

* The variable can contain any character string that is a valid panel definition
model line, except that the variable cannot define a variable model line. A
variable whose value is all blanks is acceptable.

e If the variable contains the character string OMIT starting in column 1, that
variable model line will not be used in the model definition.

 All model line variables must be initialized before the table display service is
called with a nonblank panel name. Changes to the variables that occur within
the panel or the dialog function are not honored until table display is called
again with a nonblank panel name.

e If variable model lines are being used, the panel is retrieved from disk every
time that table display is called with a nonblank panel name and the value of
the variable model line has changed.

Requirements for Initialization Section
An initialization section, if present, is processed when the TBDISPL service is
invoked with the panel name specified.

If Z variables occur as name placeholders within the model lines or the fixed
portion, an)INIT section is needed. The real names of these fields are defined by
assigning a name list, enclosed in parentheses if more than one name is given, to
the control variable, .ZVARS. For example:

)INIT
.ZVARS = '(NAME1,NAME2,NAME3)'

where NAME1, NAME2, and NAMES3 are the actual variable names corresponding
to the first, second, and third Z variables in the body or model sections. For
example, if one Z variable occurs as a placeholder within the panel body and two
Z variables occur as placeholders within the model lines, then NAME1
corresponds to the field in the body and NAME2 and NAMES3 correspond to the
two fields in the model lines. For compatibility with SPF, Z variables in the model
lines of a table display panel can be assigned to the VARS variable, rather than to
the control variable, .ZVARS. For example:

)INIT
&VARS = '(NAME2,NAME3)'

Chapter 5. Panel Definition Statement Guide =~ 137

138

It is recommended, however, that table display panels use the .ZVARS control
variable. It must be used if the CLEAR keyword is added to the)MODEL heder
statement, explicit cursor placement is used for table display, or Z variable
placeholders are in the)BODY section.

The)INIT section of a TBDISPL panel definition can contain any statement that is
valid in an)INIT section of a DISPLAY panel definition.

Requirements for Reinitialization Section

If a)REINIT section is included, it is executed when TBDISPL is reinvoked without
a panel name or when a redisplay occurs automatically because of the .MSG
control variable being nonblank.

The)REINIT section of a TBDISPL panel definition can contain any statement that
is valid in a)REINIT section of a DISPLAY panel definition.

Any control variable except .ZVARS can be set within the)REINIT section. If table
variables that are in the model lines are referenced within the)REINIT section,
then the values for the current row, as specified by the CRP, are used. For example,
if the .ATTR control variable is set for fields that are in the)MODEL section, then
only fields in the model set on the display that corresponds to the current selected
row will have their attributes changed.

Requirements for Processing Section
If a)PROC section is included, it is executed before control returns to the dialog
function. It is not executed while the user is scrolling.

The)PROC section of a TBDISPL panel definition can contain any statement that is
valid in a)PROC section of a DISPLAY panel definition.

Any control variable except . AUTOSEL and .ZVARS can be used in the)PROC
section. If table variables that are in the model lines are referenced within the
)PROC section, then the values for the current row, as specified by the CRP, are
used. For example, if the .ATTR control variable is set for fields that are in the
)JMODEL section, only fields in the model set on the display that corresponds to
the current selected row will have their attributes changed.

The)PROC section can check the value of ZTDSELS to determine if any rows were
selected. This value and its interpretation are:

0000 No selected rows

0001 One selected row (now the current row)

0002 Two selected rows, consisting of the current row and a pending selected
row

0003 Three selected rows, consisting of the current row and two pending
selected rows

And so forth.

Using Control Variables

Two control variables, AUTOSEL and .CSRROW, can be used in the
executable—)INIT,)REINIT, and)PROC—sections of a TBDISPL panel definition.
They are ignored in a DISPLAY panel definition.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

The .AUTOSEL and .CSRROW control variables can be used to control the
selection (and preselection) of a row in a table display. For more information on
these variables, see [_LAUTOSEL” on page 271 and " CSRROW” on page 279

Processing Panels by Using the TBDISPL Service

When a panel is displayed by the TBDISPL service, the model lines in the)MODEL
section are duplicated at the end of the logical screen. When the scrollable portion
of the screen is being formatted, only full units or duplications of these model lines
are usually displayed. Two exceptions are:

* When the command line is repositioned to the bottom of the screen, the line
above it, which can be a model line, may be overlaid with a blank line and used
as the long message line. This prevents table display data from being overlaid
with long message data.

* When the PESHOW command is in effect, up to four additional lines can be
overlaid.

Each input or output field that has a corresponding column in the table is
initialized with data from succeeding rows from the table. The first row displayed
is the row pointed to by the CRP when TBDISPL was issued.

Input or output fields in a model line that do not correspond to columns in the
table are initialized, in all rows, with the current contents of the corresponding
dialog variables. If these fields are to be blank, the corresponding variables must
be set to blanks or null prior to each call of TBDISPL. The CLEAR keyword can be
used to specify that they are to be blanked.

A user can scroll the data up and down. Scroll commands, such as DOWN 5, apply
to the number of table entries to scroll up or down. For example, if three model
lines are specified, DOWN 5 would scroll by 5 table entries, which corresponds to 15
lines on the display.

A user can enter information in any of the input fields within the fixed or
scrollable portion of the panel.

Eigure 46 on page 140 shows a sample panel definition for table display.

Chapter 5. Panel Definition Statement Guide 139

)ATTR
@ TYPE(OUTPUT) INTENS(LOW)

)BODY
Yjmmm e EMPLOYEE LIST =mmmmmmmmmmmmmmmmommmmcoemooem
%COMMAND INPUT ===> ZCMD %SCROLL ===> AMT +

+

%EMPLOYEES IN DEPARTMENT@Z +
+

TR 003 — EMPLOYEE NAME ------- -~ PHONE --- EMPLOYEE
+ CODE LAST FIRST MI AREA NUMBER SERIAL
)MODEL
7+ @LNAME @FNAME eI @PHA @PHNUM @EMPSER
)INIT
.ZVARS = ' (DEPT SELECT)'
&AMT = PAGE
.HELP = PERS123
JREINIT
IF (.MSG = ' ')
&SELECT = '
REFRESH (SELECT)
)PROC

IF (&ZTDSELS -= 0000)
VER (&SELECT, LIST, A, D, U)
)END

Figure 46. Table Display Panel Definition

Assuming that the current contents of the table are as shown in [able d and that
dialog variable DEPT contains "27’, the resulting display is shown in

Table 6. Table Display Data

EMPSER LNAME FNAME I PHA PHNUM
598304 Robertson Richard P 301 840-1224
172397 Smith Susan A 301 547-8465
813058 Russell Charles L 202 338-9557
395733 Adams John Q 202 477-1776
502774 Kelvey Ann A 914 555-4156

140 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Sl EE

———————————————————————————— EMPLOYEE LIST -------------------— ROW 1 OF 5

COMMAND INPUT ===> _ SCROLL ===> PAGE

EMPLOYEES IN DEPARTMENT 27

SELECT ---—--- EMPLOYEE NAME ------- --- PHONE --- EMPLOYEE

CODE LAST FIRST MI AREA NUMBER SERIAL

Robertson Richard P 301 840-1224 598304
Smith Susan A 301 547-8465 172397
Russell Charles L 202 338-9557 813058
Adams John Q 202 477-1776 395733
Caruso Vincent A 914 294-1168 502774

Kkkkkkkkkhkkkkkkkkkkkkkkkkxkkkk* BOTTOM OF DATA ***k*kkkkhkkkkhkkkhkkkhkhhkhkhkhhkkkr

Figure 47. Table as Displayed

In this example, the select field (left-most column) does not correspond to a
column in the table. It is used to return a selection code, entered by the user and
placed in a variable named SELECT. The other variables in the model line
correspond to variables in the table. The example also illustrates the use of two Z
variables as placeholders in the body of the panel and in the model line, the
initialization of the scroll amount field to PAGE, and the specification of a
corresponding help panel.

The same table might be displayed by using several model lines with the panel
definition shown in @5

)ATTR
@ TYPE(OUTPUT) INTENS(LOW)
TYPE(INPUT) PAD('_")

)BODY
- EMPLOYEE LIST =---eesmeccmeacsoccsocsoaceances
%COMMAND INPUT ===>_7CMD %SCROLL ===> AMT +
+
%EMPLOYEES IN DEPARTMENTOZ +
+
+ENTER CHANGES ON THE LINES BELOW.
+
)MODEL
#2 + SERIAL: GEMPSER + LAST NAME: GLNAME +
PHONE: @PHAGPHNUM + FIRST NAME: GFNAME +
INITIAL: @I ¥
)INIT
.ZVARS = ' (DEPT SELECT)
RAMT = PAGE
.HELP = PERS123
)END

Figure 48. Table Display Panel Definition with Several Model Lines

Chapter 5. Panel Definition Statement Guide 141

The resulting display is shown in Eigure 49 An entry separator, consisting of a
dashed line, is also included as the last model line. In this example, the SELECT
field has been increased to 4 characters, with underscores used as pad characters.

—_

D‘m| | a |E|
———————————————————————————— EMPLOYEE LIST --------—--—-—--—--——— ROW 1 OF 5
COMMAND INPUT ===> &us. SCROLL ===> PAGE

EMPLOYEES IN DEPARTMENT 27

ENTER CHANGES ON THE LINES BELOW.

SERIAL: 598304 LAST NAME: Robertson
PHONE : 301 840-1224 FIRST NAME: Richard
INITIAL: P
SERIAL: 172397 LAST NAME: Smith
PHONE : 301 547-8465 FIRST NAME: Susan
INITIAL: A
SERIAL: 813058 LAST NAME: Russell
PHONE : 202 338-9557 FIRST NAME: Charles
INITIAL: L
=)
D‘D| | =] |E|
SERIAL: 395733 LAST NAME: Adams
PHONE : 202 477-1776 FIRST NAME: John
INITIAL: Q
SERIAL: 502774 LAST NAME: Caruso
PHONE : 914 294-1168 FIRST NAME: Vincent
INITIAL: J

kkkkkkkkkkkkkkkkkkkkkkxkkxkxxxxx*x BOTTOM OF DATA * % % % % % % s s s s s s o o o o o o o o o o o % % % % % % %

Figure 49. Table as Displayed with Several Model Lines

Formatting Panels That Contain Dynamic Areas

ISPF facilities permit the format and content of a display to be determined in the
same dialog in which it is displayed. This is called dynamic formatting. See

['Specifying Dynamic Areas” on page 200 for information on how to specify a

dynamic area in the)ATTR section header.

142 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Areas are reserved for this purpose in a panel definition and are called dynamic
areas. A dynamic area can encompass all or part of a panel display.

The format of a dynamic area is specified by a string of control and data
characters, stored in a dialog variable. This variable may have been produced
either in the current dialog or, earlier, in another dialog or program. The string
usually contains a mixture of nondisplayable attribute characters and data to be
displayed. The name of the dialog variable is chosen by the panel designer. This
name is placed in the panel definition within the dynamic area.

A dialog uses the DISPLAY, TBDISPL, or SELECT service to display a panel
containing a dynamic area. After the display and after entry of any input by the
user, data from within the dynamic area is stored in the variable, associated with

the area, and is available for processing by the dialog function.

When a panel is displayed, the number of lines in a dynamic area can be increased
automatically to accommodate the number of lines available on the terminal being
used for the display.

Panel Processing Considerations

When you are defining a dynamic area and generating a dynamic character string
that defines the format of the data to be placed within that area on the panel, a
number of rules apply:

The area cannot be specified by using a Z-variable place-holder within the panel
body.

Within the dynamic area, all nonattribute characters are treated as data to be
displayed. Unlike other parts of the panel body, a variable name does not follow
an attribute character.

The dialog is responsible for insuring data integrity, validity of attribute codes,
and so on, for the dynamic character string.

If the dynamic area has a width that is less than the screen size, the panel
designer must place the appropriate attribute characters around this box so that
the data within the area is not inadvertently affected. For example, the panel
designer can place fields with SKIP attributes following the right-most
boundaries so that the cursor is properly placed to the next or continued input
field within the area.

If the dialog must know the dimensions of the dynamic area before the data is
formatted, this information is available by invoking the PQUERY dialog service.
All dialog services are described in ISPF Services Guide

The scroll amount field is optional. On a panel with a scrollable area, if the input
field following the command field in the panel body is exactly 4 characters long,
it is assumed to be the scroll amount field. Otherwise, the system variable
ZSCROLLD, which can be set by the dialog, is used to determine the default
scroll amount. If there is no scroll amount field and ZSCROLLD has not been
set, PAGE is assumed. ZSCROLLA contains the value of the scroll amount field,
such as MAX or CSR. ZSCROLLN contains the scroll number computed from
the value in the scroll amount field (number of lines or columns to scroll). For
example, if a user is in split-screen mode, 12 lines are currently visible, and the
user requests DOWN HALF, ZSCROLLN contains a ‘6. The system variable
ZVERB contains the scroll direction, DOWN in this case. If ZSCROLLA has a
value of MAX, the value of ZSCROLLN is not meaningful.

A nonblank input or output field preceding a dynamic area must be terminated
by an attribute character.

Chapter 5. Panel Definition Statement Guide 143

144

* When variable substitution occurs within a text field in the panel body, the field
must be terminated by an attribute character prior to a special Character
defining a dynamic area. See [i

[Fields” on page 109 for additional information about text field variable

substitution.

Although panel display processing cannot provide point-and-shoot support for
dynamic areas, it does provide the PAS(ON) keyword for TYPE(DATAOUT). The
PAS(ON) keyword reflects the CUA point-and-shoot color. It is up to application
developers to provide the point-and- shoot function in programs they develop.

Similarly, while the panel display service does not perform the scrolling for
dynamic or graphic areas, it does provide an interpretation of the user’s scroll
request.

The value for the SCROLL keyword cannot be specified as a dialog variable.

A panel cannot have more than one scrollable area or more than one extended
area. The scrollable area can be a panel with a scrollable area or a table display.

These rules are applied in M

/)ATTR)
AREA(DYNAMIC) SCROLL(ON) EXTEND(ON)

)BODY

o S —— 750 N ———

%COMMAND ===>_7CMD +SCROLL ===>_AMT +

Y

+ (Instructions for this panel ...)

n

HSAREA == m o mmmm e e #

+

+ (More instructions for this panel ...)

+

- J/

Figure 50. Panel Definition lllustrating SCROLL and EXTEND

In this example, there are:
* 5 lines in the panel body before the extended area
* 3 more lines after the extended area.

This makes a total of 8 lines that are outside the dynamic area. Therefore, if the
panel were displayed on a 3278 Model 4, which has 43 lines, the depth or extent of
the dynamic area would be 43 minus 8, or 35 lines. In split-screen mode, the panel
is still considered to have a 35-line scrollable area, even though part of it is not
visible.

In this example, the dynamically-generated data string to be placed in the area is
taken from the dialog variable SAREA. If, for example, the dynamic area is 60
characters wide and 10 lines deep, the first 60 characters of the string are placed in
the first line of the area, the next 60 characters are placed in the second line of the
area, and so on, until the last 60 characters are placed in the tenth line of the area.
Following a user interaction, the contents of the area are stored in the same
variable.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

The width of the dynamic area includes the special characters that designate the
vertical sides. These delimiter characters do not represent attribute characters.

A number of the capabilities described in the previous sections have implications
for panel areas as well as panel fields. These include:

* A REFRESH statement can be used to reset an area when reinitializing or
redisplaying a panel. The variable value is again read and placed in the area.
Since the value also contains attribute information that may have changed, the
characteristics for each field are again analyzed.

¢ The cursor placement capability applies to dynamic areas. That is, . CURSOR can
be assigned to a dynamic area name and .CSRPOS can be assigned to a position
within the dynamic area. The position within an area applies within the
rectangular bounds of that area.

¢ The .ATTRCHAR control variable can be used to override attribute characters
that are used within dynamic areas. In addition, . ATTRCHAR can be used to
define a new attribute character that has not been previously listed within the
panel)ATTR section. Using .ATTRCHAR as a vehicle for defining new attribute
characters can be done only within the)INIT section and only for fields within
dynamic areas (TYPE(DATAIN) or TYPE(DATAOUT)).

e The PQUERY service can be invoked by the dialog function to determine the
characteristics of the dynamic area before the dialog function constructs the
dynamic character string.

Character-Level Attribute Support for Dynamic Areas
ISPF allows you to associate character-level attributes with individual characters

within a dynamic area. Each character in the dynamic area can be assigned
characteristics of color and extended highlighting, which override these attribute
values identified in the field attribute. You can also specify that a graphic escape
(GE) order be used to display a graphic character from an alternate character set.
See I’Dpfining the Attribute Section” on page 171 for more information.

Note: Character-level color and extended highlighting will be ignored when
running in GUI mode.

These attributes are treated as character attributes only if they are used in the
shadow variable for the dynamic area (see the description of shadow variable
below); otherwise, they are treated as text.

Variables may be substituted for the values of the COLOR, HILITE, and GE
keywords in the same way they are substituted for field attributes.

The .ATTRCHAR control variable may be used to override the COLOR, HILITE,
and GE keywords for character attributes in the same way it is used to override
field attributes. The TYPE keyword cannot be overridden from TYPE(CHAR) to

Refer to the ISPF Dialog Tag Language Guide and Reference for details in defining
character attributes within dynamic areas in panels created using DTL.

Specifying Character Attributes in a Dynamic Area

If a dynamic area is to contain character attributes, a shadow variable must be
defined. The TYPE(CHAR) attributes must be placed in this variable such that they
map to the characters in the dynamic area affected by the attribute. ISPF ignores

Chapter 5. Panel Definition Statement Guide ~ 145

146

any other characters or field attributes that are placed in this shadow variable, but
it is recommended that blanks be used as filler characters.

Note: If consecutive characters have the same character attributes (an entire word,
for example), the attribute character must be repeated in the shadow
variable for EACH character affected. For panels to be displayed on DBCS
terminals, a TYPE(CHAR) attribute should only map to the first byte of a
double-byte character.

The shadow variable is associated with the dynamic area by placing the shadow
variable name after the dynamic area name in the panel definition. The two
variable names must be separated by a comma only, and the shadow variable
name must be followed by a blank.

Note: The dynamic area and shadow variables cannot be Z variables in the panel
source.

Refer to the ISPF Dialog Tug Language Guide and Reference for details on specifying a
shadow variable using Dialog Tag Language.

Conflict Resolution Between Attributes
If the terminal does not support the specified TYPE(CHAR) attribute of color or
extended highlighting, this attribute is ignored and defaults to the field attribute.

If the terminal does not support the graphic escape order, or if the character
defined by TYPE(CHAR) GE(ON) is not in the range "40’X through 'FE’X, ISPF
does not place a GE order in the order stream prior to this character and displays
this character as a blank.

¢ System variable ZGE can be checked by the dialog to determine if the terminal
supports the graphic escape order, and if not, can substitute different characters
in the dﬁnamic area. The characteristics for this variable are as shown in

Name | Pool | Type | Len | Description

ZGE shr non 3 YES - Terminal supports the
graphic escape order

NO - Terminal does not
support the graphic
escape order

Figure 51. ZGE Characteristics

Note: When running in GUI mode, ZGE=OFF and any character defined with
GE(ON) will display as a blank.

If a TYPE(CHAR) attribute is defined with other keywords, such as INTENS,
CAPS, JUST, PAD, and so forth, in addition to COLOR, HILITE, or GE, only the
COLOR, HILITE, and GE keywords are recognized. If the GE keyword is specified
for any type other than TYPE(CHAR), TYPE(ABSL), TYPE(WASL), or TYPE(CH), it
is ignored. If a TYPE(CHAR) attribute is specified in the shadow variable that
contains neither the COLOR nor the HILITE keywords, the character defaults to
the field attribute.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Any character attribute specified in the shadow variable that maps to the location
of a field attribute character in the dynamic area variable is ignored. (For instance,
see Figure 5. A $ in the first character position of the variable SHADOW is
ignored because the first character position in the variable CATTAREA is a -
indicating a field attribute.)

On DBCS terminals, ISPF ignores any TYPE(CHAR) attribute that maps to a
character that precedes the first field attribute. Following the first field attribute,
any TYPE(CHAR) attribute that maps to the second byte of a double-byte character
is ignored. In addition, the GE(ON) keyword specified for a TYPE(CHAR) attribute
that maps to a double-byte character is ignored.

A character attribute specifying the GE(ON) keyword can be defined within a
TYPE(DATAIN) field. However, any data typed into this character position might
be returned to the dialog as an unpredictable character.

Character attributes are associated with a character and not with the character’s
position in the buffer. If a character is moved, for example, because of an insert or
delete operation, the attribute moves with the character.

The screen image recorded in the list data set as a result of the PRINT, PRINT-HI,
PRINTL, or PRINTLHI contains a blank character for all character attributes
defined with the GE(ON) keyword.

w shows an example of the panel source for a panel with a dynamic area
containing character attributes.

JATTR
* AREA(DYNAMIC)
$ TYPE(CHAR) HILITE(REVERSE) COLOR(YELLOW)
@ TYPE(CHAR) COLOR(RED)
TYPE(CHAR) COLOR(BLUE) HILITE(USCORE)
" TYPE(DATAOUT) INTENS(LOW) COLOR(WHITE)
)BODY
D — CHARACTER ATTRIBUTE PANEL--mmmmmmmmmmmmmmmmmmmmm
%COMMAND ===>_ZCMD

+The following will contain character attributes:
*CATTAREA, SHADOW == m = m = mm o oo oo e *

)END

Figure 52. Dynamic Area with Character Attributes

The next example shows how the dynamic area and shadow variables are defined
and initialized in a PL/1 program to display the above panel.

DECLARE CATTAREA CHAR(50) INIT /* Dynamic Area Variable =*/
(' These words contain character attributes: Fox Cat');

DECLARE SHADOW CHAR(50) INIT /* Shadow of Dynamic Area Variable */
(! $tt o ')

In the panel displayed from the examples above, the F in the word Fox is yellow
and displayed in reverse video, the ox in the word Fox is blue and underscored,

Chapter 5. Panel Definition Statement Guide =~ 147

148

the C in the word Cat is red with no highlighting, and the at in the word Cat as
well as the rest of the sentence, defaults to the field attribute and is displayed low
intensity and white with no highlight.

Formatting Panels That Contain a Graphic Area

ISPF panel definition syntax allows specification of a graphic area within a panel.
An ISPF display can contain a picture or graph generated through use of the
Graphical Data Display Manager (GDDM) licensed program. A graphic area
defined within a panel definition provides part of the interface between ISPF and
GDDM. A graphic area can contain either a picture, constructed by use of GDDM
services or a graph, constructed by use of the GDDM Presentation Graphics
Feature (PGF). Graphic areas can contain alphanumeric fields within them,
represented in the usual panel field syntax. These fields can partially overlap the
graphic area.

Formatting of a graphic area display is controlled by GDDM.

When specifying a graphic area display, the dialog developer issues a request for
the ISPF GRINIT service specifying the name of the panel definition in which the
graphic area is defined. This request establishes the interface to GDDM. Next, calls
to GDDM that request GDDM services specify the picture to appear in that graphic
area. Then the ISPF DISPLAY service is used to display the panel.

The dialog must provide an 8-byte area, called an application anchor block (AAB),
which is on a full-word boundary, to the GRINIT call. This AAB identifies the
ISPF/GDDM instance and must be used in all GDDM calls made by the dialog.
Within the ISPF/GDDM instance, the dialog cannot perform any of the following
GDDM calls:

ASREAD FSSHOR ISFLD ~ MSPCRT MSQMOD PTNSEL WSCRT

FSSHOW ISQFLD MSPQRY MSQPOS PTSCRT WSDEL WSIO

FSENAB FSTERM ISXCTL MSPUT MSREAD PTSDEL WSMOD

FSEXIT GSREAD MSCPOS MSQADS PTNCRT PTSSEL WSSEL

FSINIT ISCTL MSDFLD MSQGRP PTNDEL PTSSPP WSSWP
FSRNIT ISESCA MSGET MSQMAP PTNMOD SPINIT

ISPF GDDM services do not run in the background, and thus, cannot be requested
in a batch environment. See f’Dpﬁning the Attribiite Section” on page 171 for
information using the AREA keyword in the)ATTR section to define a graphic
area.

Graphics Panel Processing Considerations

ISPF automatically switches into graphics interface mode when the GRINIT service
is requested. This mode continues for the life of the ISPF session. GDDM is called
to perform all full-screen displays from this point on, or until a request for the
dialog service GRTERM is issued. The following notes apply to graphics interface
mode:

Stacked TSO commands
The field mark key is not available to enter commands at one time.

5550 terminals
GDDM graphics are supported through the Japanese 3270PC/G Version 3
emulator program. The ISPF-GDDM interface allows DBCS and
mixed-character fields in the panel body, outside the graphics area, to be
displayed through GDDM. Full color and highlighting are supported
through use of the Japanese 3270PC/G Version 3 and 3270PC Version 5
emulator programs.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

3290 terminals
The vertical split function is disabled. Panels are displayed with a
larger-size character set. The partition jump key is not functional.

Alternate screen widths
You cannot use GDDM with terminal devices whose primary width is
different from their alternate width. For example, 3278 model 5.

Autoskip facility
When entering data in a field, GDDM automatically moves the cursor to
the next input field when the preceding field is full.

First field attribute
GDDM requires that the first field on a panel begin with an attribute
character. Therefore, the ISPF/GDDM interface copies the attribute
character for the last field on a panel to the first panel position. This can
result in the first byte of the panel data being overlaid.

Data transfer
The entire screen buffer is sent to the terminal even if no fields have been
modified.

NUMERIC (ON)
The numeric lock feature is not active when using GDDM.

Graphic output
GDDM calls issued from an application are used to define graphic
primitives for the next full-screen output and are unknown to ISPF. Any
full-screen output, following the ISPF full-screen output containing the
graphic area, can cause the loss of the graphic primitives on the ISPF
panel. Hence, the application can be required to reissue the GDDM calls.

Pop-up windows
Pop-up windows cannot be displayed over graphic areas nor can graphic
areas be displayed over pop-up windows.

GUI mode
Graphic areas are not supported if you are running in GUI mode. When a
GRINIT statement is encountered, you will receive a message that panels
with graphics will not be displayed. You may choose to continue. When a
panel with graphics is encountered, a pop-up window is displayed asking
if you want the panel displayed on your host emulator session or on your
workstation without the graph.

Notes:

1. If you are in split-screen mode, the graphic area panel cannot be
displayed on the host session.

2. If you specified GUISCRD and GUISCRW values on the ISPSTRT
invocation which are different from the actual host screen size, GDDM
cannot be initialized and the GRINIT service will end with a return
code of 20.

Using DBCS-Related Variables in Panels

The following rules apply to substituting DBCS-related variables in panel text
fields.

e If the variable contains MIX format data, each DBCS subfield must be enclosed
with shift-out and shift-in characters.

Example:
eeee [DBDBDBDBDB] eee [DBDBDB]

Chapter 5. Panel Definition Statement Guide 149

ee... represents a field of EBCDIC characters; DBDB... represents a field of DBCS
characters; [and] represent shift-out and shift-in characters.

* If the variable contains DBCS format data only, the variable must be preceded
by the ZE system variable, without an intervening blank.
Example:

...text...&ZE&DBCSVAR. .text...

e If the variable contains EBCDIC format data, and it is to be converted to the
corresponding DBCS format data before substitution, the variable must be
preceded by the ZC system variable, without an intervening blank.

Example:
...text...8ZC&DBCSVAR. .text...
The ZC and ZE system variables can be used only for the two purposes described

above. When variable substitution causes a subfield length of zero, the adjacent
shift-out and shift-in characters are removed.

Using Preprocessed Panels

150

You can store preprocessed panel definitions to reduce transition time. These
preprocessed panel definitions are in an encoded format, and cannot be edited
directly. Panels preprocessed with ISPF Version 3 Release 3 or Version 3 Release 5
cannot be used with any prior releases.

Preprocessed panel data sets must be defined to ISPF as you would define other
data sets. This can be either by normal allocation prior to invoking ISPF, or
dynamically during an ISPF session by using the LIBDEF service. ISPF provides a
dialog, ISPPREP, for creating preprocessed panels. This dialog can be run either in
batch mode or interactively.

You invoke the ISPPREP dialog by:

* Issuing the ISPPREP command from the command line

* Selecting it from the Functions pull-down on the ISR@PRIM panel.

* Specifying ISPPREP with the PGM keyword on the SELECT service request

To run ISPPREP by using the SELECT service, issue ISPPREP with no parameters.
For example:

ISPEXEC SELECT PGM(ISPPREP)

causes the selection panel shown in [Figure 53 on page 151 to be displayed. Issuing
the ISPPREP command from a command line or invoking ISPPREP from the

Functions choice on the action bar of the ISPF Primary Option Menu also causes
this selection panel to be displayed.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Sl EE

Preprocessed Panel Utility
Specify input and output data set names below:

Panel input data set:
Data set name
Member (* for all members)
Volume serial . . (If not cataloged)

Panel output data set:
Data set name
Member (blank or member name)
Volume serial . . (If not cataloged)

Enter "/" to select option
_ Replace like-named members
/ Save statistics for members

Command ===>
Fl=Help F2=8plit F3=Exit F9=Swap Fl0=Actions Fl2=Cancel

Figure 53. Panel for Specifying Preprocessed Panel Input and Output Files (ISPPREPA)

To run ISPPREP in batch mode, you include the PARM keyword, together with the
panel-input and panel-output identifiers, on the SELECT service request. For
example:

ISPEXEC SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(PANA)'),
OUTPAN (' ISPFPROJ.PXY.PANELS (PANB) ') EXEC)

requests the SELECT service to convert member PANA in ISPFPROJ.GRE.PANELS
to the internal format and to write it to member PANB in ISPFPRO]J.PXY.PANELS.

Note: The previous example must be run from a REXX or CLIST command
procedure.

You can control whether existing members in the output data set having the same
identification as that specified will be replaced. In batch mode, use the

NOREPL | REPLACE parameter with the PARM keyword for specifying whether
members are to be replaced. In interactive mode, use the line provided on the
panel shown in @ for specifying whether members are to be replaced.

ISPPREP converts panel input data set members to an internal format and writes
them to the specified output panel data set members. A given panel file can
contain a mixture of preprocessed panels and regular panel definitions.

ISPPREP does not destroy the source panels from which it creates preprocessed
panels. However, you should save those panels in case they must be updated in
the future. When the preprocessed panels are ready for use, you can use them to
replace the corresponding source files for the ISPPLIB defaults.

ISPPREP provides an option for generating statistics for preprocessed panels. ISPF
provides the version (always 1), modification counter, creation date last-modified
date, current number of lines, initial number of lines, number of modified lines
(always 0), and user ID for the message or panel. These statistics are visible on
memberlist displays such as ISPF BROWSE and EDIT. The statistics are placed in
the SPF directory.

Chapter 5. Panel Definition Statement Guide 151

152

Restrictions for Using ISPPREP

When using ISPPREP, you should note that certain restrictions apply to those panel
definitions that can be converted to their internal format. These restrictions apply
only when creating preprocessed panels and are based on the fact that
preprocessed panels cannot have a dynamically defined width and depth.

The following restrictions apply to panel definitions to be converted:

1. The use of a dialog variable with the WIDTH keyword on the)BODY header
statement of a panel definition is not allowed.

2. The specification of EXTEND(ON) for the attribute character of a dynamic,
graphic, or scrollable area is not allowed.

3. The use of a dialog variable to define a model line in a table display panel
definition is not allowed.

4. For DBCS panels, the correct character set must be loaded prior to invoking
ISPPREP. Panels to be displayed on a 5550 3270 Kanji Emulation terminal must
be converted using the 3278KN character set (set in option 0.1).

Preprocessed panel objects should not be copied from a fixed to a variable record
format data set. Blank data could be lost. This can cause the product to abend or
can create a display error when the copied panel object is used by display
processing. Use ISPPREP to transfer preprocessed panel objects to a variable record
format data set or when the receiving data set logical record length or logical
record format is not the same as the source data set.

ISPPREP output data sets must conform to the same LRECL limits as ISPPLIB.

Using ISPPREP with the SELECT Service

You can use the PGM keyword of the SELECT service to invoke ISPPREP. The
syntax for invoking ISPPREP is as follows:

ISPEXEC SELECT PGM(ISPPREP) [PARM(INPAN(PDSin),
OUTPAN (PDSout)
[,INVOL(volser#)]
[,0UTVOL(volser#)]
[,NOREPL | REPLACE]
[,STATS|NOSTATS]
[LEXEC])]

The PARM keyword on the SELECT indicates that ISPPREP is to be run in batch
mode. The absence of the PARM keyword indicates that ISPPREP is to be run as
an interactive dialog and that PDSin, the panel input library, and PDSout, the
panel output library, are to be specified on a data-entry panel. Both the ISPPREP
command and option 2 on the ISP@PRIM primary option panel select ISPPREP in
interactive mode.

The panel input and panel output library identifiers, whether specified on the
SELECT statement when in batch mode or on the data entry panel when in
interactive mode, follow the same guidelines.

PDSin (panel input library)
The name of the library of panel definitions to be converted to their
internal format. PDSin must be in the form:

('partitioned data set name[(member)]"')

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

The member name can be specified either by indicating the specific name
or by coding an asterisk. Coding an asterisk for the member name
indicates that all members in the specified data set are to be converted to
preprocessed panels. This allows conversion of all panel definitions within
a data set in one call of ISPPREP.

You cannot specify the same name for the input partitioned data set and

for the output data set, even if you specify REPLACE unless the data sets
exist on different volumes and you specify the appropriate volume serial

numbers by using the INVOL and/or OUTVOL parameters.

When running in batch mode, you are not required to enter a member
name. The absence of the member name is equivalent to coding an asterisk
for the member name. In interactive mode, failure to explicitly state a
member name or an asterisk causes the data-entry panel to be redisplayed
with a message prompting the user for the member name.

PDSout (panel output library)
The name of the library to which the preprocessed panels will be written.

The form of PDSout is the same as that of PDSin. You can specify a blank
or name for the member name. A blank indicates that the member name
specified for PDSin is to be used as the member name for PDSout.

Coding an asterisk for a member name in PDSout is invalid.

INVOL (input PDS volume serial number)
Specifies the serial number of the volume on which PDSin resides. If this
parameter is omitted, the system catalog is searched.

It must be used when the data set exists but is not cataloged. INVOL is
optionally specified in batch mode as well as in interactive mode. In batch
mode the keyword (INVOL) is specified along with the volume serial
number as part of the SELECT statement.

OUTVOL (output PDS volume serial number)
Specifies the serial number of the volume on which PDSout resides. If this
parameter is omitted, the system catalog is searched.

It must be used when the data set exists but is not cataloged. OUTVOL is
optionally specified in batch mode as well as in interactive mode. In batch
mode the keyword (OUTVOL) is specified along with the volume serial
number as part of the SELECT statement.

NOREPL | REPLACE
A keyword that specifies whether existing partitioned data set members
are to be replaced in PDSout. The default is NOREPL in batch mode. In
interactive mode, an option must be specified.

STATS INOSTATS
User controls whether member statistics are to be saved in the SPF
directory. The default option is STATS.

EXEC Specifies that ISPPREP is being executed from a CLIST or REXX command
procedure. The EXEC parameter causes the return code to be set to 24 if a
space-related abend occurs on the output file.

Any panel specified in the panel input library that is already a preprocessed panel

is copied directly to the panel output library (contingent on the
NOREPL | REPLACE specification).

Chapter 5. Panel Definition Statement Guide 153

154

ISPPREP should be invoked with the NEWAPPL keyword specified on the SELECT
statement. (This is necessary because ISPPREP issues LIBDEF service calls.) If
NEWAPPL is not specified, any LIBDEF issued prior to the execution of ISPPREP
can no longer be in effect.

Examples of Using ISPPREP

* Convert PDS member PANA, in ISPFPROJ.GRE.PANELS, and write the
preprocessed panel to member PANB, in ISPFPROJ.PXY.PANELS, if it does not
already exist. Both PDSs are cataloged.

SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(PANA)'),
OUTPAN('ISPFPROJ.PXY.PANELS(PANB) '),
NOREPL) NEWAPPL

e Convert PDS member PANA, in ISPFPROJ.GRE.PANELS, and unconditionally
write the preprocessed panel to member PANB, in ISPFPROJ.PXY.PANELS. Both
PDSs are cataloged.

SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(PANA)'),
OUTPAN(' ISPFPROJ. PXY.PANELS (PANB) '),
REPLACE) NEWAPPL

* Convert the entire PDS ISPFPROJ.GRE.PANELS, which contains three members
(PANA, PANB, and PANC), and unconditionally write the preprocessed panels
to PDS ISPFPROJ.PXY.PANELS, which contains three members also (PANA,
PANB, and PANC). Both PDSs are cataloged.

SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(*)"'),
OUTPAN('ISPFPROJ.PXY.PANELS()'),
REPLACE) NEWAPPL

* Convert the entire PDS ISPFPROJ.GRE.PANELS, which contains four members
(PAN1, PAN2, PAN3, and PAN4) and is cataloged. If the members do not
already exist, write the preprocessed panels to PDS ISPFPROJ.PXY.PANELS,
which is not cataloged
SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(*)'),

OUTPAN('ISPFPROJ.PXY.PANELS()'),
OUTVOL (TSOPK7) ,NOREPL) NEWAPPL

* Convert the entire PDS ISPFPROJ.GRE.PANELS and unconditionally write the
preprocessed panels to PDS ISPFPROJ.PXY.PANELS. Both PDSs are not
cataloged.

SELECT PGM(ISPPREP) PARM(INPAN('ISPFPROJ.GRE.PANELS(*)"'),
INVOL(TSOPK7),

OUTPAN(' ISPFPROJ.PXY.PANELS()'),
OUTVOL (TSOPK7) ,REPLACE) NEWAPPL

Handling Error Conditions and Return Codes

There are two general classes of error conditions involved with ISPPREP: those
associated with the dialog itself, and those associated with the conversion of
individual panel definitions.

The dialog error conditions encountered cause immediate termination of ISPPREP
conversion processing. If you are operating in interactive mode and recovery is
possible, the data-entry panel will be redisplayed with an appropriate message.
Otherwise, ISPPREP will terminate. Dialog errors include conditions such as:
invalid input or output PDS names; a reference to a non-existent PDS; or a
reference to an uncataloged PDS without providing the correct volume serial
number.

Panel conversion error conditions apply only to the current panel being converted
and are usually due to an error in the panel definition. If such an error is

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

encountered, processing of the current panel definition halts, and processing of the
next panel definition (if it exists) begins. A panel conversion error associated with
one panel definition does not effect the conversion of subsequent panel definitions.

ISPPREP logs error and informational messages in ISPLOG. Any error conditions
encountered cause an appropriate message and return code to be written to the

log. This is also true for any conditions that warrant an informational message.

The following return codes are possible from ISPPREP:

0 Normal completion.

4 Panel definition cannot be processed (see restrictions); NOREPL is specified
and the panel (member) already exists in the output library.

8 Panel definition contains syntax errors; panel already in use (enqueue
failed) or panel (member) not found.

12 Invalid syntax or keyword in parameter string; data set is not found.

16 Data set allocation or open failure.

20 Severe error.

24 A space-related abend occurred while ISPPREP was being executed from a

CLIST or REXX command procedure with the EXEC parameter specified.

Since ISPPREP can convert a number of panel definitions to their internal format in
one call, a number of conditions may arise that generate a return code other than
‘0’. ISPPREP returns the highest return code generated. However, if invoked in
interactive mode, ISPPREP will return ‘0" unless an unrecoverable dialog error is
encountered, in which case the code returned is 20". Refer to the log for a more
comprehensive look at ISPPREP’s results.

Chapter 5. Panel Definition Statement Guide ~ 155

156 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 6. Panel Definition Statement Reference

This chapter is divided into three sections that provide reference information for:
* Panel sections—page

* Panel definition statements—page bod

* Control variables—page bad

The information in each section is arranged in alphabetical order.

Defining Panel Sections

[Cable 4 on page 100 describes the panel sections in the order in which they must be
defined.

This section provides reference information for each of the following panel sections

in alphabetical order :
)JABC—page fis2
)ABCINIT—page (63
)ABCPRoc—pﬁgj fled
JAREA—page
)JATTR—page iz
)BODY—page bod
)CCSID—page B13
JEND—page b14
)HELP—page b14
)INIT—page b1d
)LIST—page b1d
YMODEL—page b17
)PANEL—page 14
)PNTS—page b21
)PROC—page 24
)REINIT—page 223.

Defining the Action Bar Choice Section

The)ABC (action bar choice) section defines an action bar choice for a panel and
its associated pull-down choices. An JABC section must exist for each action bar
choice displayed in the Action Bar area on a panel. The maximum number of JABC
sections on a panel is 40.

)ABC DESC(choice-description-text) [MNEM(number)]

where:

DESC(choice-description-text)
Text displayed in the panel’s action bar area for the action bar choice. The
maximum length of the text is 64 characters.

The action bar choice-description-text must match the choice-description-text
specified in the)BODY section of the panel. ISPF does not translate the value
to uppercase. If choice-description-text contains any special characters or
blanks, you must enclose it in quotes in the JABC DESC parameter. However,
when it is specified in the)BODY section of the panel, you should not enclose
it in quotes. Each action bar choice should be unique.

© Copyright IBM Corp. 1980, 2001 157

)ABC Section

MNEM (number)
Specifies the position of the character that will be the mnemonic for the action
bar text. The letter is designated by an underscore on the display. This
keyword, if it exists, must follow the DESC keyword. Number is the position of
the character (not byte position).

)ATTR

TYPE(AB)
@ TYPE(NT)
? TYPE(PT)
$ TYPE ABSL

)ABC DESC('Menu') MNEM(1)

YBODY CMD(ZCMD)
@# Menu# Utilities# Compilers# Options# Status# Help@

@ ?ISPF Primary Option Menu+

For SBCS/DBCS mixed choice-description-text, number cannot be the position
of a double-byte character position. Shift-in/shift-out bytes are not considered
characters. For action bar text containing double-byte characters, we
recommend adding a single-byte character, enclosed in parentheses, to the end
of the double-byte text. The MNEM (number) is the position of this single-byte
character. For example:

)ATTR

TYPE(AB)
@ TYPE(NT)
? TYPE(PT)
$ TYPE ABSL

)ABC DESC('OEDDOOUUBBLLEEQOF(M) ') MNEM(8)

)BODY CMD(ZCMD)
@# OEDDOOUUBBLLEEOF(M)# Utilities# Compilers# Options# Status# Help@

(@ ?ISPF Primary Option Menu+

where DD,OO,UU,BB,LL, and EE represent double-byte characters, OE and OF
are shift-out and shift-in characters. The single-byte character, M, enclosed in
parenthesis is the mnemonic letter. The MNEM (number), 8, indicates the
underscored mnemonic letter is in the eighth character position (not byte
position). Shift-out and shift-in characters are not considered as character
positions.

In 3270 mode you access the action bar choice in one of the following ways,
where "x" is the mnemonic letter that is underscored:

1. Enter "ACTIONS x” in the command field

2. Enter "x" in the command field and press the function key assigned to the
ACTIONS command.

158 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JABC Section

The pull-down menu for that action bar choice displays. If you enter a

mnemonic letter, "x”, that is not found to be an underscored mnemonic letter
on the panel, then the cursor is placed on the first action bar choice.

In 3720 mode, panels without a command line will not display mnemonic
characters, because there is no command line on which to enter the ACTIONS
command and parameter. Terminals or emulators that do not support extended
highlighting will not display host mnemonics.

In GUI mode you use a hot key to access an action bar choice; that is, you can
press the ALT key in combination with the letter that is underscored in the
choice. A hot key is also referred to as an accelerator key or shortcut key. If the
character in the ALT character combination is not found to be an underscored
mnemonic letter in the panel, then no action is taken.

Note: If you specify duplicate characters (case insensitive) for the mnemonics
within the action bar, the result of invoking the mnemonics is operating
system dependent.

Note: For each separate action bar choice section, you must define a corresponding
)JABCINIT (action bar choice initialization) section. An JAPCPROC (action
bar choice processing) section is optional. You must include these sections in
the panel source definition in the proper order as shown in the following
example:

)ABC

YABCINIT
)ABCPROC

Specifying Action Bar Choices in Panel)BODY Section

The specification of an action bar choice is included in the panel source
immediately following the)BODY panel definition statement header. The order in
which the action bar choices are specified indicates to ISPF how the choices will
appear in the action bar area on the displayed panel. Internally, action bar choices
are numbered sequentially starting from left to right and from top to bottom. The
first action bar choice will be numbered one.

)ATTR
@ TYPE(AB)
TYPE(NT)

)BODY
@ choicel@ choice2@ choice3#

Notes:

1. A blank must separate the choice-description-text and the AB attribute
character. The attribute byte for the first choice can be in any column except
column 1. A text attribute character to delimit an action bar line should be
coded immediately following the last character of the last choice-description-
text on each action bar line.

2. A separator line should follow the last action bar line.

When the panel is displayed in GUI mode, the separator line (the line
following the last action bar choice) is not displayed.

3. ISPF considers the panel line following the last action bar choice as part of the
action bar area.

Chapter 6. Panel Definition Statement Reference 159

)ABC Section

The action bar can consist of multiple lines by specifying action bar choices on
more than one line in the panel)BODY section.
JATTR

@ TYPE(AB)
TYPE(NT)

)BODY
@ choicel@ choice2@ choice3#
@ choice4@ choice5@ choiceb#

Defining Pull-Down Choices within the)ABC Section
Within each action bar section, pull-down choices are defined with the PDC
statement.

PDC DESC(choice-description-text)
[UNAVAIL(unavail _variable_name)]
[MNEM (number)]

[ACC(keyl[+key2] [+key3]1)]
[PDSEP(OFF|0ON)]

where:

DESC(choice-description-text)
Actual text that is displayed for the pull-down choice it defines. Special
characters or blanks must be enclosed within quotes. The maximum length of
the text is limited to 64 characters. ISPF numbers each choice. Do not include
choice numbers in your text. The pull-down choices defined in each)ABC
section are internally numbered sequentially starting with the number one
(1,2,...n) and the number is prefixed to the pull-down choice-description-text.

Note: Numbers do not appear with pull-down choices when you are running
in GUI mode.

UNAVAIL(unavail_variable_name)
Name of a variable that contains a value to indicate whether or not the
pull-down choice is available for selection when the panel is displayed. When
the variable contains a value other than 0 (false, therefore available) or 1 (true,
therefore unavailable), the variable is ignored and the choice is available. The
choice is available even if the specified variable cannot be found.

Note: The current setting is shown as an unavailable choice; that is, it displays
in blue (the default) with an asterisk as the first digit of the selection
number. If you are running in GUI mode, the choice is grayed. ISPF
issues an error message if you try to select it. You can change the color,
highlight, and intensity of an unavailable choice by using the CUA
Attribute Utility.

MNEM (number)
Specifies the position of the character that will be the mnemonic for the
pull-down choice text. The letter is designated by an underscore on the GUI
display. Number is the position of the character (not byte position). For
SBCS/DBCS mixed choice-description-text, number cannot be the position of a
double-byte character. Shift-in/shift-out bytes are not considered characters.

160 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JABC Section

Note: If you specify duplicate characters (case insensitive) for the mnemonics
within the action bar, the result of invoking the mnemonics is operating
system dependent.

This keyword is ignored on a 3270 display.

ACC(key1[+key2] [+key3])
Specifies an accelerator, or shortcut, key. This is a key or combination of keys
assigned to a menu choice that initiates that choice, even if the associated
menu is not currently displayed. The accelerator key text is displayed next to
the choice it pertains to on the menu.

The variables keyl1, key2, and key3 can be any of the following keys: Ctrl, Shift,

Alt, Insert, Delete, Backspace, Fn, the single keys a through z, and 0 through 9.
The keys Ctrl, Shift, Alt, a through z, and 0 through 9 cannot be used as single
accelerator keys. They must be used in combination with other keys.

Rules for accelerator keys

e It is suggested that you avoid using the Alt key combined with a single
character key as an accelerator. Alt + char should be used for mnemonic
access only. Also, avoid using a function key, or Shift + function key, as an
accelerator.

¢ The following single keys must be used in combination with some other key:
Ctrl, Shift, Alt, A—Z, a—=z, and 0—9.

* Only one key can be a function key.

* If you use a two key combination, one key must be Ctrl, Shift, or Alt, and
the other must be Insert, Delete, Backspace, F1-F12, A-Z, a-z, or 0-9.

* If you use a three key combination, two key must be Ctrl, Shift, or Alt, and
the other must be Insert, Delete, Backspace, F1-F12, A-Z, a-z, or 0-9.

¢ The combined text string cannot exceed 30 characters.

After you define your accelerators, remember to keep the following accelerator
search order in mind when you hit a key or combination of keys:

1. Operating system specific definitions. For example, Ctrl+Alt+Delete reboots
your OS/2 machine rather than invoke a pulldown choice that might have
this key combination specified as an accelerator.

2. Pulldown choice accelerator definitions.

w

Accelerator assigned with the panel. For example, a function key.

4. System menu-type definitions. For example, Alt+F4 is defined in the
Communications Manager System Menu as an accelerator for closing the
emulator session.

For example, if F2 is defined as an accelerator key on the ISPF Primary Option
Panel’s Menu pulldown for the EDIT pulldown option, and the F2 function
key is set to the ISPF SPLIT command, when you hit the F2 key, EDIT is
started instead of the screen being split.

Accelerators are a GUI-specific function. An option appears on the ISPF
Settings Panel (under GUI settings) that specifies whether or not accelerators
are supported. The default is to have the support. If you turn this setting off,
accelerators are not functional, and do not appear in the pull-down menus.

PDSEP(OFF | ON)
Specifies a pull-down choice separator bar. These are separators within a
pull-down that group logically related choices.

Chapter 6. Panel Definition Statement Reference 161

)ABC Section

The separator is a solid line between the previous choice and the first choice in
the logical group. You code the PDSEP keyword on the pull-down choice
AFTER the separator bar. That is, the separator bar is displayed prior to the
choice it is coded on.

Any separator coded on the first pull-down choice is ignored, and because the
function is GUI-specific, separator bars are ignored in the host environment.

You must associate the pull-down choice entry field with a variable name. To do
this, code a .ZVARS statement in the JABCINIT section.This variable is used as the
pull-down entry field name of each pull-down.

The PDC statement is paired with an optional ACTION statement. When some
action is to be performed for a pull-down choice, an ACTION statement must
immediately follow the PDC statement defining the pull-down choice.

ACTION RUN(command-name) [PARM(command-parms)]

where:

RUN ((command-name)
Required keyword. Specifies the name of a command to be executed. The
command name must be 2-8 characters. Coding the keyword ACTION
RUN(x), where x is a 1-character command name, results in an error condition.
ISPF searches for the command in the application, user, site, and system
command tables, if they are defined.

You can use the ISRROUTE command, which is an ISPF command in
ISPCMDS, to invoke the SELECT service. The ACTION RUN statement is as
follows:

ACTION RUN (ISRROUTE) PARM (SELECT 'your-select-command-parms')

where your-select-command-parms contains the SELECT service invocation and
all required parameters. This allows your dialog to not have to create a
separate command in the application command table for every RUN statement
coded within your dialog panels.

PARM(command-parms)
Optional keyword. Specifies the parameters to use when processing the
command in the application, user, site, or system command table. Enclose the
command-parms value in quotes if it contains special characters or blanks.

You can define only one ACTION statement per PDC statement in the JABC panel
section. You can specify the RUN() or PARM() keywords in any order on an
ACTION statement. Also, if the RUN() or PARM() keywords are duplicated within
an ACTION statement, ISPF will use the last occurrence of the keyword.

shows an example of an action bar section definition.

162 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

JABCINIT Section

) PANEL
)ATTR
@ TYPE(AB)
TYPE(NT)

)ABC DESC(FILE) MNEM(1)
PDC DESC(file-choicel) ACC(ATt+F1)
ACTION RUN(command-name) PARM(command-parms)
PDC DESC(file-choice2) UNAVAIL(&unvar2)
ACTION RUN(command-name) PARM(command-parms)
PDC DESC(file-choice3) PDSEP(ON)
ACTION RUN(command-name) PARM(command-parms)
YABCINIT
.ZVARS = PDCHOICE
&PDCHOICE = '
&unvar2 = 1

)ABCPROC
VER (&PDCHOICE,LIST,1,2,3)

)ABC DESC (HELP)
PDC DESC(help-choicel) MNEM(6)
ACTION RUN(command-name) PARM(command-parms)
PDC DESC(help-choice2)
ACTION RUN(command-name)
PDC DESC(help-choice3)
ACTION RUN(command-name) PARM(command-parms)

)ABCINIT
.ZVARS = PDCHOICE
&PDCHOICE =

)ABCPROC
VER (&PDCHOICE,LIST,1,2,3)

)BODY
@ FILE@ HELP#

)END

Figure 54. Action Bar Section Example

Defining the Action Bar Choice Initialization Section

The)ABCINIT section header statement has no parameters. ISPF associates the first
JABCINIT section it encounters before another panel definition statement header
with the previous)ABC section.

)ABCINIT

The rules that apply to the JABCINIT section and its contents are the same as those
that apply to the ISPF)INIT panel definition statements. However, the processing
is limited to the action bar choice and its pull-down.

The)ABCINIT section runs when the user selects that action bar choice.

Chapter 6. Panel Definition Statement Reference 163

)JABCINIT Section

Note: If you are running in GUI mode, the JABCINIT section runs prior to sending
the panel to the workstation.

At least one statement must be specified in the JABCINIT section. The JABCINIT
section must contain a .ZVARS control variable assignment statement to associate a
field name with the pull-down entry field.

See l'Earmatting Panel Definition Statements” on page 228 for additional

information.

Defining the Action Bar Choice Processing Section

The)JABCPROC section header statement has no parameters. ISPF associates the
first)JABCPROC section it encounters before another panel definition statement
header with the previous)JABC section.

)ABCPROC

The rules that apply to the) ABCPROC section and its contents are the same as
those that apply to the ISPF)PROC panel definition statement. However, the
processing is limited to the action bar choice and its pull-down.

The JABCPROC section runs when the user completes interaction with the
pull-down choice.

Note: If you are running in GUI mode, the JABCPROC section runs after the
pull-down has been selected at the workstation.

The JABCPROC section is not required. ISPF verifies all valid pull-down choices
for you.

When you manually position the cursor in the action bar area with the CANCEL,
END, or RETURN command on the command line, and you press ENTER, or if
you manually position the cursor in the action bar area and you press a function
key to execute the CANCEL, END, or RETURN commands, the cursor is
repositioned to the first input field in the body of the panel. If there is not an input
field, the cursor is repositioned under the action bar area. If the request is to
execute the EXIT command, the action taken is controlled by the application.

When you use the ACTIONS command to position the cursor in the action bar
area and you execute the CANCEL command, the cursor is returned to where it
was before the ACTIONS command was executed. A CANCEL command executed
from a pull-down removes the pull-down.

See I'Eormatting Panel Definition Statements” on page 224 for additional

information.

Defining the Area Section

The)AREA (scrollable area definition) section allows you to define scrollable areas
on a panel. See L' i ion” for information on
using the AREA(SCRL) keyword to specify that you want a scrollable area. You
can see and interact with the total content defined for the panel area by scrolling
the area.

164 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JAREA Section
Use the)AREA section header to describe the scrollable area.

)AREA name [DEPTH(depth)]

name
Specifies the name of the scrollable area that is to be matched with the name
specified in the)BODY section. This name cannot be specified as a dialog
variable.

DEPTH (depth)
Optional. Specifies the minimum number of lines in the scrollable area (not
including the scroll indicator line) when EXTEND(ON) has been specified.
DEPTH has no effect when EXTEND(OFF) is used. The top line is always
reserved for the scroll information and is not considered part of the depth
value. DEPTH can be used to insure that a required number of lines are
displayed. The depth value cannot be specified as a dialog variable. It must be
greater than or equal to the number of lines defined for the area in the)BODY
section and less than or equal to the number of lines in the JAREA definition.

A panel)AREA section defines the size and the contents of the information to be
scrolled. The contents of the)AREA section generally follow the same rules as the
)BODY section. See 'Panel Definition Considerations” on page 164 for rules
concerning the definition of a scrollable area. Multiple scrollable areas can be
defined. The name specified immediately following an AREA(SCRL) character in
the)BODY section is used to match each scrollable area to its corresponding
JAREA section. If the default EXTEND(OFF) is used, you designate the desired
depth of the scrollable area by repeating the AREA(SCRL) attribute. If
EXTEND(ON) is specified, the minimum depth is the DEPTH specified in the
)JAREA section.

The width of the scrollable area includes the special characters that designate the
vertical sides. These delimiter characters do not represent attribute characters.

The scrollable area is identified in the panel source with a new attribute defined in
the)ATTR section. This new attribute designates the borders of the scrollable area.
For example:
)ATTR

AREA(SCRL) EXTEND(ON)
)BODY
#myarea--------- #
#
#
#

A single character, Z, can be used in the JAREA section, just as it can be used in the
)BODY section, as a place-holder for an input or output field. The actual name of
the field is defined in the INIT section with the control variable .ZVARS. The
actual field names are in a name list, with all the actual field names for the)BODY
and)MODEL sections. The actual field names must appear in the name list in the
order they appear in the panel definition, not in the order they will appear when
the panel is displayed. The names must appear in the)BODY section, then
)MODEL section, and then)AREA section order.

If you have defined several)JAREA sections, the .ZVARS must be listed in order
from top-to-bottom left-to-right as they appear in the panel definition.

Chapter 6. Panel Definition Statement Reference 165

)JAREA Section

Cursor position determines how an area scrolls. This is called cursor-dependent
scrolling. If scroll down is requested, the line on which the cursor is placed is
moved to the top line. If the cursor is currently on the top line of the scrollable
area, the section is scrolled as total visible lines minus one. On a panel with only
one scrollable area, if the cursor is not within the area and scrolling is requested,
the area is scrolled by the total visible lines minus one. If scrolling an area causes
the last line of an area to not be the last visible line in the area, the cursor is
moved so that the last line of the area appears at the last visible line of the
scrollable area.

The top line of the scrollable area is reserved for the scroll indicators. Actual
information from the)JAREA section is displayed beginning on the second line of
the scrollable area. The scroll indicators are displayed only if more data was
defined in the)AREA section than fits in the panel area.

The scroll indicators are displayed as follows:

More: + You can only scroll forward.
More: - You can only scroll backward.
More: -+ You can scroll forward or backward.

Forward and backward function keys should be defined in the keylist for any
application panel that has scrollable areas.

The)AREA section can contain any of the items that can be included in the)BODY
section except for the following:

* Action Bar lines

* Graphics Area

* Model Section

¢ Command Line

* Alternate Message Locations

* Another scrollable area using AREA(SCRL)

* Dynamic Area using EXTEND(ON) or SCROLL(ON).

The)AREA section must fit within the general panel limit of 32K.

Panel Definition Considerations
When you are defining a scrollable area, a number of rules apply:

e The area cannot be specified by using a Z-variable place-holder within the panel
body.

* To allow for the scroll information, the minimum width for a scrollable area is
20. The minimum depth of the scrollable area is 2.

* If the width of the scrollable area is less than the screen size, you must place
appropriate attribute characters around this area so that the data within the area
is not inadvertently affected. For example, by using place fields with SKIP
attributes following the right-most boundaries of the area, you can insure that
the cursor will tab correctly to the next or continued input field within the area.

* You must terminate an input or output field preceding a scrollable area with an
attribute character.

* Fields in the scrollable area or text fields cannot be defined to wrap. A field
cannot extend beyond one line of the area.

* The initialization of variables in the scrollable area has nothing to do with Z
variables. The setting of .ZVARS simply associates the name of a variable with a
Z place holder. It does not initialize the variable value.

166 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JAREA Section

An explicit setting of the variable in the)INIT section will initialize the variable
whether it is in a scrollable area or not. Normally, variables that are not
explicitly defined are set to null by ISPF. This occurs because ISPF tries to
retrieve an existing value from the variable pool and finds that it is not defined.
ISPF then defines the variable and sets it to null.

For scrollable areas, ISPF does not retrieve the variable unless it is to be
displayed. Therefore, a variable in a scrollable area that is not visible on the
screen does not get implicitly initialized. This is true for all the variables. If the
user wishes to initialize a variable it can be done by setting the variable to null
in the)INIT section.

If an EXTEND(ON) scrollable area is defined on a panel that does not have a
)BODY definition that covers the entire depth of the screen on which it is
displayed, the)BODY line over which the last line of the scrollable area is defined
is repeated for the remaining depth of the glass, or for the remaining number of
lines of data in the scrollable area, whichever is larger.

It is good practice to frame a scrollable area or to allow enough blank space so that
the definition of the scrollable area is clear. You should consult you own usability
standards to determine the best implementation.

Help Panels

When a help panel is defined with a scrollable area, the Left, Right, and Enter keys
that currently scroll through the tutorial panels also scroll the scrollable area. When
running under tutorial and trying to scroll past the end of the scrollable area, a
message will be displayed indicating that no more information is available in the
scrollable area. If RIGHT or ENTER is pressed again, ISPF will follow the normal
tutorial flow and display the next help panel if one has been defined. The same is
true when scrolling to the TOP of the scrollable AREA; a message indicating that
no more information is available will be displayed, and if LEFT is pressed, the
previous tutorial panel will be displayed if one has been defined.

Cursor positioning usually defines which scrollable area will be scrolled. However,
when in tutorial, if the cursor is not within a scrollable area, the first area defined

in the)BODY section will be scrolled. The LEFT and RIGHT commands should be
included in any keylist specified for a scrollable help panel.

Panel Processing

When a DISPLAY service is issued, the)INIT section is processed before the panel
is displayed on the glass. Each time you scroll and the panel is redisplayed, the
)PROC and)REINIT sections are not processed. The)PROC section is only
processed when the panel is submitted for processing as when the Enter or End
key is pressed.

When panel processing is complete and ISPF returns control to the dialog, it is
possible that required fields were not displayed. Therefore, unless a VER NB was
coded in the panel for a required field, it is possible that the application user never
scrolled the panel to see the field. It is your responsibility to insure that all
required information is obtained.

When fields are displayed on a panel, their characteristics can change without the
user interacting with the fields. For example, when CAPS(ON) is set for a field,
this only affects fields that actually are displayed. If a field is initialized with
lowercase letters and it appears on a portion of the panel that is never displayed,
the data remains in lowercase even if CAPS(ON) was set for the field.

Chapter 6. Panel Definition Statement Reference 167

)JAREA Section

Scrollable Area Examples
| shows an invalid scrollable area definition. The last line of the extendable

scrollable area also contains a line of nonextendable text to its right.

)ATTR
AREA(SCRL) EXTEND(ON)
$ AREA(SCRL)

)BODY

% New Patient Information

%Command ===> ZCMD

+Name _pname %

+

#areal --------- # $area2 -------------- $

$ $

$ $

$ $

$ $

$ $

$ $
$ $
$ $

+

+Please fill in all information.

+

JAREA AREA1 DEPTH(5)

JAREA AREA2 DEPTH(5)

Figure 55. Invalid Scrollable Area Definition

Eigure 54 shows a valid scrollable area definition. It is followed by the actual
scrollable panel displays.

)ATTR
AREA(SCRL) EXTEND(ON)
)BODY

Command ===>_7CMD

A P o

o

+Patient name _pname
+PTease fill in all information.

+

Figure 56. Valid Scrollable Area Definition (Part 1 of 2)

168 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)AREA MYAREA DEPTH(5)
+Personal information

+ Address
City, State
Zip Code
Birth date
Sex

Marital Status

+ 4+ + + + + + +++++

+Emergency Contact

+ Name
+ Home phone
+ Work phone

++Emergency Contact

+ Name
+ Home phone
+ Work phone

+
+Insurance Coverage

Group number

Relationship

Signature on file
INIT

+
+
+
+
+
+
+
+
+
+
)
) PROC

JHELP

)END

Figure 56. Valid Scrollable Area Definition (Part 2 of 2)

Home phone
Work phone

Insurance Company .

ID number
Cardholder's name . .
. ._RL+1. Self

._address
._Ctyst

. zip %
._birth %

._MS+1. Married
2. Single
3. Divorced
4. Widowed

>

=]
>

o

>

[}
NN

._ehphone
._ewphone

N o°

._ename
._ehphone
._ewphone

N ¢

._insure

+2. Spouse
+3. Parent
+4. Relative
+5. Other

. ._SG+ iY=Yes N=No)

)JAREA Section

N oF

o

Eigure 57 on page 170 shows the initial panel display, which contains a scrollable

area. More: + indicates that you can now scroll forward in the scrollable area.

Chapter 6. Panel Definition Statement Reference 169

)JAREA Section

170

]
EJ»EH

Command ===>

Patient name

Personal information
Address
City, State .
Zip Code
Birth date
Sex
Marital Status

Home phone
Work phone

. CECILIA COFRANCESCO

More: +

. 2825 N. OCEAN BOULEVARD
. BOCA RATON, FL

33432
. 00/00/00
. F (M=Male or F=Female)
1 1. Married
2. Single
3. Divorced
4. Widowed

(407)395-9446
(407)982-6449

Please fill in all information.

Figure 57. Scrollable Area Screen Display (Part 1 of 3)

Eigure 58 shows the panel display after one scroll request has been processed.
More: - + indicates that you can now scroll forward or backward in the

scrollable area.

=

EE

Command ===>
Patient name
Home phone
Work phone
Emergency Contact
Name .
Home phone
Work phone

Insurance Coverage

Group number
ID number .

Relationship

Insurance Company .

Cardholder’s name .

. CECILIA COFRANCESCO

More: -+
(407)395-9446
(407)982-6449

PAULO COFRANCESCO
(407)395-9446
(407)982-6449

. BLUE CROSS BLUE SHIELD
22
. 45463
. CECILIA COFRANCESCO
1 1. Self
2. Spouse

Please fill in all information.

Figure 58. Scrollable Area Screen Display (Part 2 of 3)

shows the panel display after you have completely scrolled
through the scrollable area. More: - indicates that you can now only scroll
backward in the scrollable area.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

=)
D*D| | a |E|
Command ===>
Patient name CECILIA COFRANCESCO
More: -
Home phone (407)395-9446
Work phone (407)982-6449
Emergency Contact
Name PAULO COFRANCESCO
Home phone (407)395-9446
Work phone (407)982-6449
Insurance Coverage
Insurance Company . . BLUE CROSS BLUE SHIELD
Group number 22
ID number 45463
Cardholder’s name . . CECILIA COFRANCESCO
Relationship 1 1. Self

2. Spouse

Please fill in all information.

Figure 59. Scrollable Area Screen Display (Part 3 of 3)

Defining the Attribute Section

The)ATTR (attribute) section of a panel contains the definitions for the special
characters or two-digit hexadecimal codes that are to be used in the definition of
the body of the panel to represent attribute (start-of-field /end-of-field) bytes. When
the panel is displayed, these characters are replaced with the appropriate hardware
attribute bytes and appear on the screen as blanks. If you do not define attribute
characters, ISPF uses defaults.

If specified, the attribute section precedes the panel body. It begins with the JATTR
header statement.

)ATTR [DEFAULT (defldef2def3)]
[FORMAT (EBCDIC | DBCS |MIX)]
[OUTLINE([L] [R] [0][U] |BOX |NONE)]

where:

DEFAULT (def1def2def3)
You can use the DEFAULT keyword to specify the characters that define a
high-intensity text field, a low-intensity text field, and a high-intensity input
field, respectively. The value inside the parentheses must consist of exactly

three characters, not enclosed in single quotes and not separated by commas or
blanks.

The DEFAULT keyword can also be specified on the) BODY header statement.

FORMAT(EBCDIC | DBCS | MIX)
The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is
FORMAT(EBCDIC). These two default values can be changed by using the
)JATTR statement or the) BODY statement. These values, in turn, can be
overridden if explicitly specified on a subsequent statement. For example, the
net result of the following two statements is FORMAT(DBCS):

Chapter 6. Panel Definition Statement Reference 171

)JATTR Section

YATTR FORMAT (MIX)
$ TYPE(INPUT) FORMAT(DBCS)

OUTLINE([LI[RI[O][U] BOXI NONE)
The default value for OUTLINE is NONE. The default value for TYPE(INPUT)
and TYPE(DATAIN) fields can be specified on the)JATTR or)BODY statement
and can be overridden by the OUTLINE keyword. For example:

JATTR OUTLINE(U)
@ TYPE(INPUT) OUTLINE(BOX)

The attribute section ends with the)BODY header statement. The number of lines
allowed in an)ATTR section depends upon the storage size available.

Using Default Attribute Characters

If not specified explicitly with the DEFAULT keyword, the default attribute
characters are:

% (percent sign) — text (protected) field, high intensity

+ (plus sign) — text (protected) field, low intensity
_ (underscore) - input (unprotected) field, high intensity

These three defaults are the equivalent to specifying:

)ATTR
% TYPE(TEXT) INTENS(HIGH)
+ TYPE(TEXT) INTENS (LOW)
_ TYPE(INPUT) INTENS(HIGH)

The default values for the JUST (justification) and CAPS (uppercase and lowercase)
keywords vary according to how the field is used. JUST and CAPS are attribute

statement keywords that are described in IEarmatting Attribute Section

You can change the default characters by using a keyword on either the)ATTR or
)BODY header statement. For example:

DEFAULT (abc)

where a, b, and c are the three characters that take the place of %, +, and _,
respectively.

Typically, you use the DEFAULT keyword on the)JATTR header statement if the 3
default characters are to be changed, and additional attribute characters are also to
be defined. For example:

)ATTR DEFAULT($2_)

= TYPE(INPUT) INTENS(NON)
TYPE(OUTPUT) INTENS(LOW) JUST(RIGHT) PAD(0)

In this example, the default characters for text fields are changed to $ for high
intensity, and ¢ for low intensity. The default character for high-intensity input
fields is _, the same as the ISPF-supplied default. The example defines two
additional attribute characters: ~ for nondisplay input fields and # for low-intensity
output fields. The output fields are to be right-justified and padded with zeros.

You could use DEFAULT on the)BODY header statement, with the entire attribute
section omitted, if the only change is to redefine the default characters. For
example:

)BODY DEFAULT($o_)

172 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

If you use DEFAULT on both the)ATTR and the)BODY header statements, the
)BODY specification takes precedence.

Formatting Attribute Section Statements

Each attribute statement defines the attribute character for a particular kind of
field. You can define a given attribute character only once. The remainder of the
statement contains keyword parameters that define the nature of the field.

Generally, you should choose special (non-alphanumeric) characters for attribute
characters so that they will not conflict with the panel text. An ampersand (&),
blank (hexadecimal 40), shift-out (hexadecimal OE), shift-in (hexadecimal 0F), or
null (hexadecimal 00) cannot be used as an attribute character.

You can specify a maximum of 127 attribute characters. This limit includes the 3
default characters, attribute overrides, and TBDISPL dual defaults. For action bar
panels or panels with scrollable areas, you can specify a maximum of 110 attribute
characters. This is because ISPF uses some attribute characters internally.

Note: In attribute keywords, the value can be expressed as a literal or as a dialog
variable name, preceded by an ampersand (&). For example:

INTENS (&A)

Variable substitution is done after processing of the)INIT section. The current
value of the dialog variable must be valid for the particular keyword. In the
previous example, the value of dialog variable A must be HIGH, LOW, or NON.

attrchar

[AREA(DYNAMIC) [EXTEND(ON|OFF)][SCROLL(ON|OFF)]
[USERMOD (usermod-code)] ___ -
[DATAMOD (datamod-code)]

[AREA (GRAPHIC) [EXTEND(ON|OFF)]]
[AREA(SCRL) [EXTEND(ON|OFF)TT
[ATTN(ON|OFF)] T

[CAPS (ON[OFF|IN|OUT]

[CKBOX (ON|OFF)]

[COLOR(value)]

[CSRGRP (x)]

[COMBO (ON| OFF | name)]
[CUADYN(vaTue)]

[DDLIST (ON|OFF |name)]

[DEPTH(d)] ~

[FORMAT (EBCDIC | DBCS |MIX)]
[HILITE (value)]

[GE(ON|OFF)]

[INTENS (HIGH | LOW|NON)]

[JUST (LEFT[RIGHT [ASIS)]
[LISTBOX(ON|OFF|name)]
[NOJUMP (ON | OFF)]

[NUMERIC (ONJOFF)]
[OUTLINE([LITRT[0] [u]|BOX|NONE)]
[PAD (char |NULLS |USER)] -
[PADC (char |[NULLS |USER)]

[PAS (ON|OFF)]

[RADIO(ON]OFF)]

[REP(char)T

[SKIP(ON|OFF)]

[TYPE (value)]

[UNAVAIL (ON|OFF)]

[WIDTH(w)]

Chapter 6. Panel Definition Statement Reference 173

)JATTR Section

where:

attrchar

The single-character or two-digit hexadecimal code that is assigned to the
attributes that follow.

AREA(DYNAMIC) EXTEND(ON | OFF) SCROLL(ON | OFF) USERMOD (usermod-
code) DATAMOD((datamod-code)

The value in attrchar specifies the special character or two-position hexadecimal
value that is used to define the dynamic area within the panel body section. In
the panel body section, the name immediately following this character
identifies the dialog variable that contains the dynamically-formatted string to
be displayed in the area. Subsequent lines of the dynamic area are defined in
the panel body by placing this character in the starting and ending columns of
the dynamic area. Except on the first line of the dynamic area, where the area
name immediately follows the left delimiter character, at least one blank must
follow the delimiter characters on the left side of the dynamic area. This is a
special character, not an actual attribute character. Other fields must not be
defined within or overlapping a DYNAMIC area.

EXTEND(ON | OFF)
Specifies whether or not the depth of an area can be automatically
increased.

ON Specifies that the depth (number of lines) of an area can be
automatically increased, if required, so that the depth of the entire
body of the panel matches the depth of the physical screen on
which it is being displayed. Accordingly, an extendable area can be
designated in the panel definition by a single line unless text or
other fields are to appear along the graphic area. Only one
extendable area can be specified in a panel definition.

Note: Using EXTEND(ON) is not recommended if your dynamic
area is displayed in a pop-up. When EXTEND(ON) is used,
the panel is extended to the size of the logical screen. If the
panel is then displayed in a pop-up, the panel may be
truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a dialog
variable.

OFF The default. Specifies that the depth (number of lines) of an area
cannot be automatically increased.

SCROLL(ON | OFF)
Specifies whether or not the area can be treated as a scrollable area.

ON Specifies that the area can be treated as a scrollable area. When a
panel containing a scrollable area is displayed, the scrolling
commands are automatically enabled. Only one scrollable area can
be specified in a panel definition.

The value for the SCROLL keyword cannot be specified as a dialog
variable.

A panel cannot have more than one scrollable area or more than
one extended area.

A panel displayed using TBDISPL cannot have a dynamic area
defined by SCROLL ON.

174 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

Although the panel display service does not perform the scrolling,
it does provide an interpretation of the user’s scroll request.

OFF The default. Specifies that the area cannot be treated as a scrollable
area.

USERMOD (usermod-code) and DATAMOD (datamod-code)
Specifies a character or two-position hexadecimal value to be substituted
for attribute characters in a dynamic area variable following a user
interaction. The attribute characters used within the dynamic area are
intermixed with the data. These attribute characters designate the
beginning of a new data field within the area. When the dynamic area
variable is returned to the dialog, usermod-code and datamod-code are used to
replace the attribute character of each field that has been modified,
according to the following rules:

¢ USERMOD specified but DATAMOD not specified

If there has been any user entry into the field, even if the field was
overtyped with identical characters, the attribute byte for that field is
replaced with usermod-code.

* DATAMOD specified but USERMOD not specified

If there has been any user entry into the field, and if the value in the
field has changed, either by the user entry or by ISPF capitalization or
justification, the attribute byte for that field is replaced with
datamod-code.

¢ Both USERMOD and DATAMOD specified If there has been any user
entry into the field but the value in the field has not changed, the
attribute byte for that field is replaced with usermod-code.

If there has been any user entry into the field and the value in the field
has changed, either by the user entry or by ISPF capitalization or
justification, then the attribute byte for that field is replaced with
datamod-code.

¢ Neither DATAMOD nor USERMOD specified
The attribute byte for the field is unchanged.

You can specify more than one dynamic area on a panel. The number of
dynamic areas in a panel definition is limited only by physical space
limitations of the particular terminal being used for the display.

Examples:

)ATTR
AREA(DYNAMIC) EXTEND(ON) USERMOD(!)

The character ’!" replaces the attribute byte for each field in the dynamic area
that has been touched, not necessarily changed in value, by the user. All other
attribute bytes remain as they are.

JATTR
AREA(DYNAMIC) EXTEND(ON) DATAMOD(01)

The hexadecimal code 01" replaces the attribute byte for each field in the
dynamic area that has been touched by the user and has changed in value. All
other attribute bytes remain as they are.

JATTR
AREA(DYNAMIC) EXTEND(ON) USERMOD(OC) DATAMOD(03)

Chapter 6. Panel Definition Statement Reference 175

)JATTR Section

The hexadecimal code '0C” replaces the attribute byte for each field in the
dynamic area that has been touched by the user, but has not changed in value.
The hexadecimal code ‘03’ replaces the attribute byte for each field in the
dynamic area that has been touched by the user and has changed in value. All
other attribute bytes remain as they are.

If the datamod or usermod code is one of the following special characters, it
must be enclosed in single quotes in the JATTR section:

b]ank<(+|);—|_,>;=

If the desired character is a single quote, use four single quotes:
DATAMOD(""”).

AREA(GRAPHIC) EXTEND(ON | OFF)

The value in attrchar specifies a character or two-digit hexadecimal value,
called the graphic attribute character, to be used to define the graphic area (4
corners) within the panel body. If you use a graphics area, this character must
be defined; there is no default value. A panel definition can contain only one
graphic area.

EXTEND(ON | OFF)
Specifies whether or not the depth of an area can be automatically
increased.

ON Specifies that the depth (number of lines) of an area can be
automatically increased, if required, so that the depth of the entire
body of the panel matches the depth of the physical screen on
which it is being displayed. Accordingly, an extendable area can be
designated in the panel definition by a single line unless text or
other fields are to appear along the graphic area. Only one
extendable area can be specified in a panel definition.

Note: Using EXTEND(ON) is not recommended if your graphic
area is displayed in a pop-up. When EXTEND(ON) is used,
the panel is extended to the size of the logical screen. If the
panel is then displayed in a pop-up, the panel may be
truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a dialog
variable.

OFF The default. Specifies that the depth (number of lines) of an area
cannot be automatically increased.

A graphic attribute character cannot have any other attribute properties. For
example, it cannot be mixed with attributes such as INTENS, CAPS, JUST, or
PAD.

The graphic attribute character is used to define the boundaries of the graphic
area in the panel body, as follows:

* The graphic area is defined on the panel as a rectangle. The graphic attribute
character is used to define the 4 corners plus the remaining characters of the
vertical sides of this rectangle. You delineate the top and bottom of the
rectangle with the characters you use to complete the area outline on the
screen. For example, in Figure 60 on page 177, the 4 corners and vertical
sides are defined by the asterisk character in the JATTR section. The top and
bottom of the area have been completed with dashes.

176 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

¢ A graphic area must be identified with a name that appears in the left top
corner, immediately following the first graphic attribute character of that
area. The name of the graphic area must be followed by a blank. This name
is used when retrieving information about the area through the PQUERY
dialog service or the LVLINE panel built-in function. The PQUERY service is
described in ISPF Services Guide

* A graphic area can contain ISPF-defined alphanumeric fields.
* ISPF-defined alphanumeric fields can partially overlap graphic areas.

* The first line of the graphic area in the panel definition must have the
graphic attribute character in the starting and ending columns of the area. If
an alphanumeric field overlaps one of the subsequent lines of the graphic
area, it must be delimited by a graphic attribute character. See @&&%m‘

for an example.

* Any field preceding a graphic attribute character should be terminated by an
ISPF attribute character to prevent GDDM from overlaying the left-most
boundary characters of the area. When variable substitution occurs within a
text field in the panel body, the field must be terminated by an attribute
character prior to a special character defining a graphic area.

”

provides
additional information about variable substitution in text fields.

* The width of the graphic area includes the graphic attribute character
positions.

* The PQUERY service and the LVLINE panel built-in function can be used to
obtain information about the size of the graphic area.

These rules are applied in w

/)ATTR h
* AREA(GRAPHIC)
)BODY
Fmmmmmm e TITLE =---mmmmmmmm o -
%COMMAND ===>_7CMD %
+ (Text or other fields that are part of the
+ normal panel body ...)
+
L SoiE cooocomommeroomocmecomoocaes *
* *
* *
* *
* *
* *
* *
I *
)END
J

Figure 60. Panel Definition Illustrating a Graphic Area

In this example, a graphic area is defined. PICT1 is specified as the name of
the area. An asterisk (*) is the delimiter character for the vertical sides of the
area, and hyphens (-) are the delimiter character for the top and bottom. Note
that a blank follows the area name and follows all asterisks (*) other than the
asterisk adjacent to PICT1.

Chapter 6. Panel Definition Statement Reference 177

)JATTR Section

Ei%??d [Eigure 62 are examples of panel definitions with a graphic area.
In

, note that the alphanumeric field INPUT1 starts at *_" and ends at

rll

/)ATTR)
* AREA(GRAPHIC)
)BODY
% MY COMPANY OPTION PANEL
% Your selection ==>_ZCMD +
¥
+ 1 Qur application 1 +%[0G0 ---------mmmmmm- *
+ 2 Our application 2 +* *
+ 3 Our application 3 +* *
+ 4 Our application 4 +* *
+ 5 Our application 5 +x *
+ +x *
+ X Exit R et *
+ T Tutorial <--- Graphic Area --->
)END
- J
Figure 61. Panel Definition with Graphic Area
~
/)ATTR
| AREA(GRAPHIC)
)BODY
% Panel with Overlapping text field
% Here is the data as a graph and with editorial text:
¥
+|PICl —emcommemaes |
I I
I I
I I
I
_INPUTL |
% <- graphic area ->
)END
- J

Figure 62. Definition of Panel Graphic Area with Overlapping Text Field

AREA(SCRL) [EXTEND(ON | OFF)
The value in attrchar specifies the special character or two-position hexadecimal
value that is used to define the borders of the scrollable area in the) BODY
section.

EXTEND(ON | OFF)
Specifies whether or not the depth of an area can be automatically
increased.

ON Specifies that the depth (number of lines) of an area can be
automatically increased, if required, so that the depth of the entire
body of the panel matches the depth of the physical screen on
which it is being displayed. Accordingly, an extendable area can be
designated in the panel definition by a single line unless text or
other fields are to appear along the graphic area. Only one
extendable area can be specified in a panel definition.

178 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

Note: Using EXTEND(ON) is not recommended if your scrollable
area is displayed in a pop-up. When EXTEND(ON) is used,
the panel is extended to the size of the logical screen. If the
panel is then displayed in a pop-up, the panel may be
truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a dialog
variable.

OFF The default. Specifies that the depth (number of lines) of an area
cannot be automatically increased.

ATTN(ON | OFF)
Defines the attention-select attribute of the field; it is valid only for text fields.

ON Specifies that the field can be selected by using the light pen or cursor
select key.

OFF The default. Specifies that the field cannot be selected in this manner.

Note: The panel designer must provide an adequate number of blank
characters before and after the attention attribute character, as required
by the 3270 hardware.

CAPS(ON | OFFIIN 1 OUT)
Specifies the uppercase or lowercase attribute of a field. CAPS is not valid for
text fields. The CAPS keyword can have any one of the following values:

ON Data is translated to uppercase before being displayed and all input
fields are translated to uppercase before being stored.

OFF Data is displayed as it appears in the variable pool and all input fields
are stored as they appear on the screen.

IN Data is displayed as it appears in the variable pool, but all input fields
on the screen are translated to uppercase before being stored.

OUT Data is translated to uppercase before being displayed. All input fields
are stored as they appear on the screen.

Unless you specify a CONTROL ASIS command procedure (CLIST)
statement, the use of CAPS(OFF), CAPS(IN), and CAPS(OUT) is
negated if the dialog variable is referred to in the command procedure.
If you omit the CAPS parameter, the default is:

* CAPS(OFF) for input or output fields in the)MODEL section of a
table display panel

¢ CAPS(OFF) for DATAIN and DATAOUT fields in dynamic areas
¢ CAPS(ON) for all other input or output fields.

CKBOX(ON | OFF)
Allows a one-character input field followed by a protected (text or output)
field to be processed as a check box in GUI mode. The input field is displayed
as a check box and the protected field is the check box description.

The CKBOX keyword can have one of the following values:
ON Process the input field as a check box.

OFF Process the input field as non-check box field. This is the default
setting.

Chapter 6. Panel Definition Statement Reference 179

)JATTR Section

If the check box input field is not blank, the check box is initialized as selected
(checked). If the check box is selected, a slash character (/) is placed in the
check box input field when the panel is processed.

The CKBOX keyword is ignored if the input field is greater than one character,
or if the next field following the check box field is not a protected field. An
error message is issued if the CKBOX keyword is used on any fields other than
input fields, or the selected choice (SC) output field.

Example:

)ATTR

@ TYPE(CEF) CKBOX(ON)
$ TYPE(SAC)

)BODY

+ Select options:
&INSTR+
@Z$Check box #1 description+
@Z$Check box #2 description+
@Z$Check box #3 description+
@Z$Check box #4 description+

YINIT
.ZVARS = '(BOX1 BOX2 BOX3 BOX4)'
IF (&ZGUI = ' ')
&INSTR = 'Enter '/'' to select option.'
ELSE
&INSTR = 'Check box to select option.'
)END

COLOR(value)

For 3279-B terminals (or other ISPF-supported seven-color terminals), the
COLOR keyword defines the color of a field. The value can be: WHITE, RED,
BLUE, GREEN, PINK, YELLOW, or TURQ (turquoise). If a color has not been
specified and the panel is displayed on a terminal, a default color is Eenerated
based on the protection (TYPE) and intensity attributes of the field.

shows which defaults are the same as the hardware-generated colors for
3279-A (or other ISPF-supported four-color terminals).

Table 7. Color Defaults

Field Type Intensity Default Color
Text/Output HIGH WHITE
Text/Output LOW BLUE

Input HIGH RED

Input LOW GREEN

If a color has been specified and the panel is displayed on a terminal other

than one with features such as those on the 3279-B, the following occurs:

* If an explicit intensity has also been specified for the field, the color
specification is ignored. For example:

JATTR
@ TYPE(INPUT) INTENS(HIGH) COLOR(YELLOW)

In this example, COLOR(YELLOW) is ignored except on terminals like the
3279-B. On a 3279-A terminal, for example, the resulting color is red.

180 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

* If an explicit intensity has not been specified for the field, the color is used
to generate a default intensity. Specification of blue, green, or turquoise
defaults to low intensity. Specification of red, yellow, pink, or white defaults
to high intensity. For example:

JATTR
$ TYPE(OUTPUT) COLOR(GREEN)

In this example, a low-intensity output field results.

* If neither color nor intensity has been specified for a field, the default
intensity is HIGH.

Note: You can make global changes to one or more of the ISPF-supported
colors by using the COLOR command or by selecting the Global Color
Change choice from the Colors pull-down on the ISPF Settings panel.
You can control the colors when you are in GUI mode. Refer to the ISPF
User’s Guide for more information.

COMBO(ON | OFF | name)
Enables you to define choices for a combination box in GUI mode. This
keyword is used in conjunction with the)LIST section. See ‘Defining the LIST
ion” for more information about the)LIST section. The
COMBO attribute keyword is valid on input type fields only. The combination
box combines the functions of an entry field and a drop-down list (see page
[.82). 1t has an entry field and contains a list of choices that you can scroll
through to select from to complete the entry field. The list of choices is hidden
until you take an action to make the list visible. As an alternative, you can type
text directly into the entry field. The typed text does not need to match one of
the choices in the list. The width of the input field determines the width of the
combination box. If a COMBOBOX field is immediately followed by 3 or more
consecutive attributes, then the COMBOBOX will be displayed for the entire
length of the field, since the 3 attributes allow space for the COMBOBOX
button without overlaying data in the next field. If a COMBOBOX field is not
followed by 3 or more consecutive attributes, then the COMBOBOX will be
displayed for the length of the field, to avoid overlaying data in the next field,
but the COMBOBOX field will scroll to the right so that the user will be able
to type in more than enough data to fill the field.

On the host, the application must be made to implement this function. One
method to do this is to code the input field with a field-level help panel
containing a scrollable list of choices.

The COMBO keyword can have one of the following values:

ON Specifies an input field is to display as a combination box when
running in GUI mode.

OFF Specifies an input field is NOT to display as a combination box when
running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name
parameter (see L ion”). This name is
valid only on a CEF or other input type field. The name is composed
of 1 to 8 characters. Alphanumeric characters A-Z, a-z, 0-9, #, §, or @
can be used in the name, but the first character cannot be numeric.
Lowercase characters are converted into uppercase equivalents.

Note: The COMBO keyword is supported for any input field type. To keep the
following discussion simple, CEF is used to mean any input field type,
and SAC is used to mean any text or output field type.

Chapter 6. Panel Definition Statement Reference 181

)JATTR Section

The COMBO keyword must be used in conjunction with the CSRGRP(x)
keyword (see page [183). The CSRGRP(x) keyword must appear on the CEF
field that is used to enter the selection on the host, and on the SAC field that
identifies the choices in the list. The x value is a number that ties the choices to
the correct input field, which has the same COMBO keyword and CSRGRP(x)
number.

To specify the attributes of a combination box use the following syntax:
attribute-char TYPE(input) COMBO(ON|OFF|name) CSRGRP(x) DEPTH(d)

where attribute-char is the special character or 2-position hexadecimal value that
is used to define the field within the panel body section. The x in CSRGRP(x)
can be a number between 1 and 99. The number is used to group all of the
fields with the same value into cursor groups.

The TYPE value must be an input type field. The DEPTH(d) sets the number
of rows for the combination box. Values can be from 0 to 99. For example, if
you specify DEPTH(8), the combination box contains eight rows of data. If the
depth specified is 0, or if the depth is not specified, the default depth is 4.

CSRGRP(x)

Enables you to determine which pushbuttons and checkbox fields are grouped
together for cursor movement purposes. When pushbuttons or checkboxes are
grouped into cursor groups, the cursor up and down keys move the focus
through each of the fields within the group. The TAB key moves the focus out
of the group, to the next field that is not within this particular group.

To specify the CSRGRP(x) keyword for cursor groups use the following syntax:

attribute-char TYPE(PS) CSRGRP(x)
attribute-char TYPE(OUTPUT) PAS(ON) CSRGRP(x)
attribute-char TYPE(CEF) CKBOX(ON) CSRGRP(x)

where attribute-char is the special character or 2-position hexadecimal value that
is used to define the field within the panel body section. The x in CSRGRP(x)
can be a number between 1 and 99. The number is used to group all of the
fields with the same value into cursor groups. If you specify a CSRGRP on a
field that is not displayed as a pushbutton, a checkbox, a radio button, listbox,
combination box, or drop-down list, then the CSRGRP keyword is ignored.

All pushbuttons and checkbox fields that do not have a CSRGRP defined do
not have a cursor group set in GUI mode, which has the same effect as having
them all in the same cursor group.

CUADYN((value)

Enables you to define dynamic area DATAIN and DATAOUT attributes with
CUA attribute characteristics. For more information, see L ifyzi i

lA.l:eaS—QD_page_ZQ-d” .

DDLIST(ON | OFF | name)

Enables you to define choices for a single choice selection list and display the
list in a drop-down box in GUI mode. A drop-down list is a variation of a list
box (see @I; A drop-down list initially displays only one item until you take
action to display the rest of the items in the list.

The DDLIST keyword can have one of the following values:

ON Specifies a single selection list to display as a drop-down list when
running in GUI mode.

182 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

OFF Specifies a single selection list is NOT to display as a drop-down list
when running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name
parameter (see L d). This name is
valid only on a CEF or other input type field. The name is composed
of 1-8 characters. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can
be used in the name, but the first character cannot be numeric.
Lowercase characters are converted into uppercase equivalents.

Note: To keep the following discussion simple, CEF is used to mean any input
field type, and SAC is used to mean any protected text or output type.

The DDLIST keyword must be used in conjunction with the CSRGRP(x)
keyword (see page fried). The CSRGRP(x) keyword must appear on the CEF
field that is used to enter the selection on the host, and on the SAC field that
identifies the choices in the list. The x value is a number that ties the choices to
the correct input field, which has the same DDLIST keyword and CSRGRP(x)
number.

Defining a DDLIST Without a)LIST Section

The following describes how to define a drop-down list using just the attribute
keywords DDLIST and CSRGRP. Define the drop-down list by coding the
DDLIST(ON) keyword on the CEF field and on the SAC field that identifies
the choices that go with the CEF field. The SAC choice fields that have the
same keyword settings (DDLIST and CSRGRP) as the CEF field are used to
build the list of choices in the list. They are not built into the panel body when
the panel is displayed. The fields following the SAC fields should be text or
output fields, they are used as the list choice text. If a field following an SAC
field is not a text or output field, no entry is built in the list for that field. The
data in the drop-down list is displayed in the order that ISPF processes the
defined panel body, that is, left to right, and top to bottom.

ISPF initially compares the CEF field with each SAC field for the drop-down
list. If a CEF and SAC match is found the drop-down list field is set to the
matching SAC choice text field. If no match is found, or if the CEF field is
blank, the drop-down list field is set to blank.

To specify the attributes of a drop-down list use the following syntax in the
JATTR section:

attr-char TYPE(CEF) DDLIST(ON) CSRGRP(x) WIDTH(w) DEPTH(d)
attr-char TYPE(SAC) DDLIST(ON) CSRGRP(x)

Where attr-char is the special character or 2-position hexadecimal value used to
define the choice entry field, or the SAC field within the panel body section.
The other variables listed in the example are:

WIDTH(w)
The value of w sets the width of the drop-down list. Values can be
from 0 to 99. This parameter is only used when it is specified on a CEF
field. If you specify a width, ISPF makes the drop-down list that is
displayed the specified width. If you do not specity, or specify a width
of zero, ISPF scans the next field that is not one of the choice numbers
or choice text fields for the CEF field to determine the available space

Chapter 6. Panel Definition Statement Reference 183

)JATTR Section

for the list. In this case, ISPF sets the width to the smaller value
between the available space and the length of the longest choice text
string.

This value does not include the DDLIST borders. If you specify
WIDTH(5), the DDLIST can contain 5 characters of data. The width
you specify should be large enough to hold the longest choice text
string. Also ensure that there is enough panel space for it to fit without
overlaying other fields on the panel.

Note: Ensure that, from the starting position of the drop-down list, the
width that you specify does not extend past the right border of
the panel.

DEPTH(d)
The value of d sets the number of rows for the list to display. Values
can be from 0 to 99. This parameter is only used when it is specified
on a CEF field. If you specify a depth, ISPF makes the drop-down list
that is displayed the specified depth.

If you specify DEPTH(8), the DDLIST can contain 8 lines of data. If the
depth specified is 0, or if the depth is not specified, the default depth
is 4.

Example Panel Definition for DDLIST

JATTR

@ TYPE(CEF) DDLIST(ON) CSRGRP(1)
$ TYPE(SAC) DDLIST(ON) CSRGRP(1)
TYPE(SAC)

)BODY

+Terminal Characteristics:
+Screen format

@Z $1.#Data+ $3.#Max+

$2.#STD+ $4.#Part+

Defining a DDLIST With a)LIST Section

Another way to define a DDLIST is to build the choices into the)LIST section

of the panel. See I'Defining the TIST Section” on page 216 for more information

about the LIST section.

To specify the attributes of a drop-down list use this syntax:

)ATTR
attr-char TYPE(CEF) DDLIST(name) CSRGRP(x) WIDTH(w) DEPTH(d)
attr-char TYPE(SAC) DDLIST(ON) CSRGRP(x)

)LIST name
VAL(valuel) CHOICE(choicel)
VAL(value2) CHOICE(choice2)

Where the DDLIST(name) on the CEF field in the JATTR section matches the
name on the)LIST statement. The)LIST section contains the list of choices and
the values for the drop-down list. The data in the drop-down list is displayed
in the order in which you define the choices in the)LIST section.

184 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

If the choices are also built into the panel body, the SAC attribute must have
DDLIST(ON) so that ISPF does not display the choices in the panel body, but
uses the choices specified in the)LIST section.

ISPF initially compares the CEF field with each VAL(value) in the named)LIST
section. If a CEF and VAL match is found the drop-down list field is set to the
matching VAL'’s choice text. If no match is found, or if the CEF field is blank,
the drop-down list field is set to blank.

— RECOMMENDATION

Defining drop-down lists is not a trivial task. You might find it less
complex if you use the Dialog Tag Language to define panels that contain
drop-down lists. Refer to Dialog Tag Language (DTL) Guide and Reference
for information about the DTL.

When you define drop-down lists, keep the following points in mind:

The CEF field (or other input field) receives the selection number and the
SAC field (or other output or text field) that contains the selection number.
The SAC field must be followed by another output or text field with the
choice description to be placed in the list.

The CEF field should not be more than 3 characters long. Only 3 characters
are checked and set for CEF fields processed as drop-down lists.

If the text following the SAC attribute is longer than 3 characters or the CEF
field, then the text is truncated to the size of the CEF field, or 3 characters
(whichever is smaller when that list choice is selected). Periods at the end of
the string are ignored, they are not set into the list entry field with the other
text when the choice is selected and the panel is processed.

If a CEF field has the same CSRGRP value as a previous CEF field, and both
of them have the same DDLIST(ON) keyword, then the second CEF field is
displayed as an input field and all of the choices with the same keywords
are grouped under the first CEF field.

If a CEF field has a DDLIST(ON) and a CSRGRP value that does not match
an SAC field with DDLIST(ON) and a CSRGRP value that comes after it,
then the CEF field is displayed as an input field.

If an SAC field has a DDLIST(ON) and a CSRGRP value that does not match
a previous CEF field with DDLIST(ON) and a CSRGRP value, then the SAC
field and the description following it do not display.

If an SAC field is not followed by an output or text field to be used as the
list choice text, then the SAC field is not displayed, and there is no entry in
the list for that choice.

DEPTH(d)
The value of d sets the number of rows for a list box, drop-down list, or
combination box to display. Values can be from 0 to 99. This parameter is only
used when it is specified on an input field. See the appropriate sections on list
boxes, drop-down lists, and combination boxes for more information.

FORMAT(EBCDIC | DBCS | MIX)
For DBCS terminals, the FORMAT keyword specifies the character format for a
field.
EBCDIC

EBCDIC characters only

Chapter 6. Panel Definition Statement Reference 185

)JATTR Section

DBCS DBCS characters only
MIX EBCDIC and DBCS characters

In a FORMAT(MIX) field, any DBCS character string must be enclosed by a
shift-out (hexadecimal OE) and a shift-in (hexadecimal OF).

The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is
FORMAT(EBCDIC). These two default values can be changed by using the
)JATTR statement or the) BODY statement. These values, in turn, can be
overridden if explicitly specified on a subsequent statement. For example, the
net result of the following two statements is FORMAT(DBCS):

JATTR FORMAT (MIX)
$ TYPE(INPUT) FORMAT(DBCS)

The default value for a TYPE(TEXT) and a TYPE(OUTPUT) field is
FORMAT(MIX). The format of a TYPE(TEXT) field cannot be overridden by the
execution of an .ATTR or .ATTRCHAR statement. The attempt to do so results
in a dialog error.

The pad character for a DBCS field is converted to the corresponding 16-bit
character and is then used for padding. Other format fields are padded
normally.

The CAPS attribute is meaningful only for EBCDIC and MIX fields. In
addition, within a MIX field, the CAPS attribute applies only to the EBCDIC
subfields.

GE(ON | OFF)

The GE keyword indicates that a specific character attribute should be
preceeded in the order stream by the graphic escape order, provided the
terminal supports GE order. The GE order indicates that the character comes
from the APL/TEXT character set. This keyword is supported on TYPE(CHAR)
within a Dynamic Area, action bar separator lines (TYPE(ABSL)), work area
separator lines (TYPE(WASL)), and column headings (TYPE(CH)).

The GE keyword can have one of the following values:

ON Specifies that ISPF will place a graphic escape order before the
attribute character when building the order stream.

OFF The default. Specifies that ISPF will not place a graphic escape order
before the attribute character.

If GE(ON) is specified on TYPE(ABSL), TYPE(WASL), or TYPE(CH), and if the
characters following these TYPE’s in the panel definition are dashes (-) or
vertical bars (1), then the appropriate APL character will be used. This results
in these panel elements displaying as solid horizontal or vertical lines, instead
of broken lines.

Note: If the terminal does not support graphic escape or if you are running
under GDDM (i.e., GRINIT service has been issued) then these panel

elements will be displayed as coded in the panel definition.

For more information on the GE keyword support on TYPE(CHAR) within a

dﬁnamic area, see page L i

186 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

HILITE(value)
For ISPF-supported terminals with the extended highlighting feature, the
HILITE keyword defines the extended highlighting attribute for a field. The
value can be:

USCORE Underscore
BLINK Blinking
REVERSE Reverse video

No default is assumed if highlighting is not specified. When you are running
in GUI mode, the HILITE keyword is ignored.

If highlighting is specified and the panel is displayed on a terminal without
the extended highlighting feature, the following occurs:

 If an explicit intensity has also been specified, the highlighting is ignored.

* If an explicit intensity has not been specified for the field, a high-intensity
field results. On a 3279-A terminal, there is also color provided by default, as

described in [Table 7 on page 18(.
Examples of Using COLOR and HILITE Keywords
@ TYPE(OUTPUT) INTENS(HIGH) COLOR(YELLOW) HILITE(BLINK)

the results are as follows:

3277,8 — TYPE(OUTPUT) INTENS(HIGH)

3279-A — TYPE(OUTPUT) INTENS(HIGH) =

3279-B - TYPE(OUTPUT) COLOR(YELLOW) HILITE(BLINK)
3290 — TYPE(OUTPUT) HILITE(BLINK)

* Results in white.

INTENS(HIGH | LOW INON)
Specifies the intensity of the field (HIGH is the default):
HIGH High-intensity field
LOW Low-intensity (normal) field
NON Nondisplay field

You can specify these operands for the basic attribute types

(TEXT I INPUT |OUTPUT). NEF is the only CUA panel-element type that
supports the INTENS(NON) operand. The remaining CUA panel-element types
do not allow the COLOR, INTENS, and HILITE keyword default values to be
changed. The NON operand allows you to optionally display comments or
directive lines.

For a panel displayed on a color terminal, you can also use the INTENS
keyword to generate a default color for the field, as described for the COLOR
keyword. INTENS(HIGH) and INTENS(LOW) are ignored for a 3290 terminal
and in GUI mode.

JUST(LEFT | RIGHT | ASIS)
Specifies how the contents of the field are to be justified when displayed. JUST
is valid only for input and output fields.
LEFT Left justification
RIGHT
Right justification
ASIS No justification

Chapter 6. Panel Definition Statement Reference 187

)JATTR Section

Justification occurs if the initial value of a field is shorter than the length of the
field as described in the panel body. Normally, right justification should be
used only with output fields, since a right-justified input field would be
difficult to type over.

For LEFT or RIGHT, the justification applies only to how the field appears on
the screen. Leading blanks are automatically deleted when the field is
processed. For ASIS, leading blanks are not deleted when the field is
processed, nor when it is initialized. Trailing blanks are automatically deleted
when a field is processed, regardless of its justification.

If you omit the JUST parameter, the default is:

* JUST(ASIS) for input or output fields in the)MODEL section of a table
display panel

* JUST(ASIS) for DATAIN and DATAOUT fields in dynamic areas
* JUST(LEFT) for all other input or output fields.

LISTBOX(ON | OFF | name)

Enables you to define choices for a single choice selection list and display the
list in a list box in GUI mode. A list box displays a scrollable list of choices in a
box on the display.

The LISTBOX keyword can have one of the following values:

ON Specifies a single selection list to display as a list box when running in
GUI mode.

OFF Specifies a single selection list is NOT to display as a list box when
running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name
parameter (see I‘T)pﬁning the TIST Section” on page 21 4) This name is
valid only on a CEF or other input type field. The name can be 1 to 8
characters long. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can
be used in the name, but the first character cannot be numeric.
Lowercase characters are converted into uppercase equivalents.

Note: To keep the following discussion simple, CEF is used to mean any input
field type, and SAC is used to mean any protected text or output type.

The LISTBOX keyword must be used in conjunction with the CSRGRP(x)
keyword (see [L82). The CSRGRP(x) keyword must appear on the CEF field that
is used to enter the selection on the host, and on the SAC field that identifies
the choices in the list. The x value is a number that ties the choices to the
correct input field, which has the same LISTBOX keyword and CSRGRP(x)
number.

Defining a LISTBOX Without a)LIST Section

Define the list box by coding the LISTBOX(ON) keyword on the CEF field and
on the SAC field that identifies the choices that go with the CEF field. The
SAC choice fields that have the same keyword settings (LISTBOX and
CSRGRP) as the CEF field are used to build the list of choices in the list. They
are not built into the panel body when the panel is displayed. The fields
following the SAC fields should be text or output fields, they are used as the
list choice text. If a field following an SAC field is not a text or output field, no
entry is built in the list for that field.

188 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

To specify the attributes of a list box use the following syntax in the JATTR
section:

attr-char TYPE(CEF) LISTBOX(ON) CSRGRP(x) WIDTH(w) DEPTH(d)
attr-char TYPE(SAC) LISTBOX(ON) CSRGRP(x)

Where attr-char is the special character or 2-position hexadecimal value used to
define the choice entry field, or the SAC field within the panel body section.
The other variables listed in the example are:

WIDTH(w)
The value of w sets the width of the list box. Values can be from 0 to
99. This parameter is only used when it is specified on a CEF field. If
you specify a width, ISPF makes the list box that is displayed the
specified width. If you do not specify, or specify a width of zero, ISPF
scans the next field that is not one of the choice numbers or choice text
fields for the CEF field to determine the available space for the list. In
this case, ISPF sets the width to the smaller value between the
available space and the length of the longest choice text string.

This value does not include the LISTBOX borders. If you specify
WIDTH(5), the LISTBOX can contain 5 characters of data.

DEPTH(d)
The value of d sets the number of rows for the list to display. Values
can be from 0 to 99. This parameter is only used when it is specified
on a CEF field. If you specify a depth, ISPF makes the list box that is
displayed the specified depth. If the depth specified is 0, or if the
depth is not specified, the default depth is 4.

This value does not include the horizontal scroll bar. If you specify
DEPTH(8), the list box can contain 8 lines of data.

Note: Ensure that from the starting position of the List Box, the width
specified does not extend past the right border of the panel.
Also ensure that from the starting position of the List Box, the
depth specified does not extend past the bottom edge of the
panel.

Example Panel Definition for LISTBOX

)ATTR

@ TYPE(CEF) LISTBOX(ON) CSRGRP(1) DEPTH(4)
$ TYPE(SAC) LISTBOX(ON) CSRGRP(1)

TYPE(SAC)

)BODY

+Terminal Characteristics:
+Terminal Type
@z $1.#3277+ $5.#3290A+
$2.4#3277A+ $6.#3278T+
$3.#3278+ $7.#3278CF+
$4.4#3278A+ $8.#3277KN+

Defining a LISTBOX With a)LIST Section

Chapter 6. Panel Definition Statement Reference 189

)JATTR Section

Another way to define a LISTBOX is to build the choices into the)LIST section
of the panel. See I'Defining the 1.IST Section” on page 216 for more information
about the LIST section.

To specify the attributes of a list box use this syntax:

)ATTR
attr-char TYPE(CEF) LISTBOX(name) CSRGRP(x) WIDTH(w) DEPTH(d)
attr-char TYPE(SAC) LISTBOX(ON) CSRGRP(x)

)LIST name
VAL(valuel) CHOICE(choicel)
VAL(value2) CHOICE(choice2)

Where the LISTBOX(name) on the CEF field in the JATTR section matches the
name on the)LIST statement. The)LIST section contains the list of choices and
the values for the drop-down list. The data in the drop-down list is displayed
in the order in which you define the choices in the)LIST section.

If the choices are also built into the panel body, the SAC attribute must have
LISTBOX(ON) so that ISPF does not display the choices in the panel body, but
uses the choices specified in the)LIST section.

RECOMMENDATION
Defining list box lists is not a trivial task. You might find it less complex
if you use the Dialog Tag Language to define panels that contain list box
lists. Refer to Dialog Tag Language (DTL) Guide and Reference for
information about the DTL.

When you define listboxes, keep the following points in mind:

* The CEF field (or other input field) receives the selection number and the
SAC field (or other output or text field) that contains the selection number.
The SAC field must be followed by another output or text field with the
choice description to be placed in the list.

* The CEF field should not be more than 3 characters long. Only 3 characters
are checked and set for CEF fields processed as drop-down lists.

* If the text following the SAC attribute is longer than 3 characters or the CEF
field, then the text is truncated to the size of the CEF field, or 3 characters
(whichever is smaller when that list choice is selected). Periods at the end of
the string are ignored, they are not set into the list entry field with the other
text when the choice is selected and the panel is processed.

 If a CEF field has the same CSRGRP value as a previous CEF field, and both
of them have the same LISTBOX(ON) keyword, then the second CEF field is
displayed as an input field and all of the choices with the same keywords
are grouped under the first CEF field.

» If a CEF field has a LISTBOX(ON) and a CSRGRP value that does not match
an SAC field with LISTBOX(ON) and a CSRGRP value that comes after it,
then the CEF field is displayed as an input field.

* If an SAC field has a LISTBOX(ON) and a CSRGRP value that does not
match a previous CEF field with LISTBOX(ON) and a CSRGRP value, then
the SAC field and the description following it do not display.

190 2z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

+ If an SAC field is not followed by an output or text field to be used as the
list choice text, then the SAC field is not displayed, and there is no entry in
the list for that choice.

NOJUMP(ON | OFF)
Specifies whether or not the jump function is disabled for a specific input field.
It is ignored on text and output fields. NOJUMP(OFF), jump function enabled,
is the default for fields with field prompts of ==> and for fields with field
prompts of leader dots (. . or ...), provided that jump from leader dots is set to
YES in the Configuration table or "jump from leader dots” is selected in the
Settings panel.

ON Specifies that the jump function is disabled and the data entered is
passed to the dialog as it was entered.

OFF Specifies that the jump function is enabled for fields with field prompts
of ==> and for fields with field prompts of leader dots (. . or ...)
provided that "jump from leader dots” is set to YES in the
Configuration table or selected in the Settings panel. This is the
default.

Note: If the application developer defines the NOJUMP(ON) attribute
keyword on a specific input field, this disables the "jump from leader
dots” setting for that field, and takes precedence over the "jump from
leader dots” setting on the Settings panel or the Configuration setting of
YES for "jump from leader dots".

NUMERIC(ON | OFF)
For terminals with the Numeric Lock feature, the NUMERIC attribute keyword
allows users to be alerted to certain keying errors. The NUMERIC attribute
keyword is used to specify, for a panel field, whether Numeric Lock is to be
activated for data keyed into that field.

ON Specifies that the Numeric Lock feature is to be activated. The terminal
keyboard locks if the operator presses any key other than 0 through 9,
minus(-), period (.), or duplicate (DUP). ON is valid only for
unprotected fields.

OFF Specifies that the Numeric Lock feature is not to be activated. The user
can type in any characters. NUMERIC(OFF) is the default value.

On a data-entry keyboard with the Numeric Lock feature, when the user
moves the cursor into a field defined by the NUMERIC(ON) attribute
keyword, the display shifts to numeric mode. If the user presses any key other
than those allowed by the Numeric Lock feature, the DO NOT ENTER
message displays in the operator information area and the terminal is disabled.
The user can continue by pressing the reset key.

Note: On non-English keyboards with the Numeric Lock feature, the comma
sometimes replaces the period as a valid numeric character.

NUMERIC(ON) and SKIP(ON) attributes cannot be specified for the same
field. If attempted, ISPF issues an error message.

The NUMERIC(ON) attribute is not supported when GDDM is active.

Chapter 6. Panel Definition Statement Reference 191

)JATTR Section

When running in GUI mode, any panel field defined as NUMERIC(ON) is
verified at the workstation. That is, only numeric characters 0 through 9 and
special characters comma (,), dash (-), and period (.) are accepted in a numeric
only defined field.

OUTLINE([LI[RI[O][U] BOX | NONE)

For DBCS terminals, the OUTLINE keyword lets you display lines around any
type of field. The keyword parameters specify where the line or lines are

displayed.
L Line to the left side of the field
R Line to the right side of the field
(0] Line over the field
U Line under the field
BOX Line surrounding the field (equivalent to LROU)
NONE
No lines

You can specify any combination of the L, R, O, or U parameters in any order,
without intervening blanks.

The default value for OUTLINE is NONE. The default value for TYPE(INPUT)
and TYPE(DATAIN) fields can be specified on the)ATTR or)BODY statement,
and can be overridden by the OUTLINE keyword. For example:

)ATTR OUTLINE(U)
@ TYPE(INPUT) OUTLINE(BOX)

When you are running in GUI mode, the OUTLINE keyword is ignored.

PAD(char INULLS | USER)

Specifies the pad character for initializing the field. This is not valid for text
fields. If PAD is omitted, the default is PAD(" ’) for output fields.

char Any character, including blank (" ’), can be specified as the padding
character. If the character is any of the following, it must be enclosed
in single quotes:
blank < (+) ;3 -, >: =

If the desired pad character is a single quote, use four single quotes:
PAD(”).

NULLS
Nulls are used for padding.

USER Padding character is specified by a user through the ISPF Settings
panel.

If the field is initialized to blanks or the corresponding dialog variable is blank,
the entire field contains the pad character when the panel is first displayed. If
the field is initialized with a value, the remaining field positions, if any, contain
the pad character.

Padding and justification work together as follows. At initialization, unless you
have specified ASIS, the field is justified and then padded. For left-justified
and ASIS fields, the padding extends to the right. For right-justified fields, the
padding extends to the left.

When ISPF processes an input field, it automatically deletes leading or trailing
pad characters as follows:

192 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

 For a left-justified field, ISPF deletes leading and trailing pad characters.

* For a right-justified field, ISPF deletes leading pad characters and stores
trailing pad characters.

* For an ASIS field, ISPF deletes trailing pad characters and stores leading pad
characters.

Regardless of the type of justification, ISPF deletes leading and trailing pad
characters for command fields.

In no case does ISPF delete embedded pad characters. It deletes only leading
or trailing pad characters.

PADC(char INULLS | USER)
Specifies conditional padding with the specified pad character. The pad
character is used as a field filler only if the value of the input or output field is
initially blank. The pad character is not displayed in the remaining unfilled
character positions if the field has an initial value. Instead, the unfilled
positions contain nulls. Otherwise, ISPF treats the PADC keyword like the PAD
keyword, including justification and deletion of pad characters before storing
variables in the pool.

char Any character, including blank (‘ ’), can be specified as the padding
character. If the character is any of the following, it must be enclosed
in single quotes:
blank < (+) ;3 =, > : =

If the desired pad character is a single quote, use four single quotes:
PAD(III/).

NULLS
Nulls are used for padding.

USER Specifies that a user-defined character be used for padding. You define
the character by using the ISPF Settings panel. PAD and PADC are
incompatible. It is not valid to specify both PAD and PADC for the
same attribute character.

If PADC is omitted, the default is PADC(USER) for input fields.

PAS(ON | OFF)
PAS is valid for input and output fields only (not for text fields). The
point-and-shoot keyword specifies the field as a point-and-shoot field. In GUI
mode, output fields specified as point-and-shoot fields are displayed as
buttons. The PAS keyword is used in conjunction with the)PNTS

point-and-shoot panel section. See EDefining the Point-and-Shoot Section” onl

for more information.

For each field on the panel that has been designated as a point-and-shoot field,
there must be a corresponding entry in the)PNTS point-and-shoot panel
section. If the cursor is placed on a point-and-shoot panel field and the Enter
key is pressed, the action associated with the field is executed. In the example
below, if the cursor is placed on the point-and-shoot field, BLUE1, and the
Enter key is pressed, the variable RED1 is set to RED. In GUI mode, the action
is executed when the pushbutton point-and-shoot field is selected. The cursor
only remains positioned on the point-and-shoot field if no intermediate panel
is displayed and if the dialog does not set the cursor position.

Note: You can use option 0 (Settings) to set the tab key to move the cursor
point-and-shoot fields. This changes output fields to input fields, but

Chapter 6. Panel Definition Statement Reference 193

)JATTR Section

data is not altered. However, if a variable is used on an output field that
is changed to an input field by the tab to point-and-shoot option, and
the variable is VDEFINEd to the application, the variable will be
truncated. In this case, the application developer should have a
temporary panel variable.

ON The field is a point-and-shoot field.
OFF The default. This field is not a point-and-shoot field.

Example:

) PANEL
JATTR

$ TYPE(PIN)

} TYPE(PS)

+ TYPE(NT)

| AREA(SCRL) EXTEND(ON)

I TYPE(OUTPUT) PAS(ON) COLOR(RED)

* TYPE(OUTPUT) PAS(ON) COLOR(BLUE)
@ TYPE(TEXT) INTENS(LOW) COLOR(RED) PAD(NULLS)
@ TYPE(TEXT) INTENS(LOW) COLOR(BLUE) PAD(NULLS)
BODY WINDOW(60,23)

COMMAND ===> 7Z(CMD
Press }DEFAULTS$to reinstate defaults

S1
AREA S1

[S]
lov)
—
[
m
*
lov)
—
[
m
—_
+ + + +

)
5
5
§
§
+
|
)
+
+
+
+
)

.cursor = bluel
&bluel =t
)PROC
REFRESH (*)
)PNTS
FIELD(BLUE1) VAR(RED1) VAL(RED)
FIELD(ZPS00001) VAR(BLUE1) VAL (DEFAULT)
)END

RADIO(ON | OFF) CSRGRP(x)

Displays mutually exclusive textual settings choices. These fields must contain
at least two choices, one of which is usually selected. A single-choice selection
list is the equivalent function on the host. In GUI mode, they appear as radio
button groups.

To have a single-choice selection list display as a radio button group, use the
RADIO(ON) keyword with the CSRGRP(x) keyword on the CEF type (or other
input type) field that is used to enter the selection on the host.

Note: The RADIO keyword is supported for any input, output, or text field
type. To keep the following discussion simple, CEF is used to mean any
input field type, and SAC is used to mean any protected text or output
type.

For a list of possible selections, attribute type SAC (select available choice) or

another text or output field type must be used before the choice selection

number. The attribute used for the choice selection number also must have the

RADIO(ON) keyword with the CSRGRP(x) keyword. The x on the CSRGRP

keyword is a number used to identify each radio button group. The CSRGRP

194 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

number on both the CEF type field and the SAC type field must match. (For
more information about CSRGRP, see @.) The next field must be a text or
output field, used as the radio button choice text.

ISPF initially sets the radio button in the group that corresponds to the value
in the CEF field. If the CEF field is blank or the value in the field does not
correspond with any of the radio button selections, then no radio button is set
by default. ISPF then uses the characters following the SAC attribute to set the
value into the CEF field with the same CSRGRP(x) number.

The CEF field must be no more than 3 characters, because only 3 characters are
checked and set for the CEF fields processed as radio buttons. If the text
following the SAC attribute is longer than 3 characters, or longer than the
value in the CEF field, then the text is truncated to the size of the CEF field or
3 characters, whichever is smaller when the radio button corresponding to that
choice is selected. Periods at the end of the string are ignored.

To specify the RADIO(ON/OFF) CSRGRP(x) keyword for radio buttons, use
the following syntax:

attribute-char TYPE(CEF) RADIO(ON/OFF) CSRGRP(x)
attribute-char TYPE(SAC) RADIO(ON/OFF) CSRGRP(x)

attribute-char
the special character or 2-position hexadecimal value used to define the
choice entry field, or the SAC field within the panel body section. The
radio button group is defined in the panel body section by using the
special character to define the radio button entry field and the radio
button choices that go with it.

TYPE(CEF)
field attribute overrides for the CEF fields can be used to set the
RADIO(ON) and CSRGRP(x) value for the CEF field.

TYPE(SAC)
or other text or output field type to be used before each of the choice
selection numbers.

RADIO(ON | OFF)
ON if the radio button is implemented, OFF if it is not.

CSRGRP(x)
x can be any number from 1 to 99. The number refers to the number of
the radio button group as a whole, not the individual choices with the
radio button group.

For example:

JATTR

@ TYPE(CEF) RADIO(ON) CSRGRP(1)

$ TYPE(SAC) RADIO(ON) CSRGRP(1)

! TYPE(CEF) RADIO(ON) CSRGRP(2)
TYPE(SAC) RADIO(ON) CSRGRP(2)

#TYPE (SAC)

)BODY

+Terminal Characteristics:
+Screen format @Z $1.#Data+ $2.#Std+ $3.#Max+ $4.#Part+

Chapter 6. Panel Definition Statement Reference 195

)JATTR Section

+Terminal Type !Z "1.#3277+ 3.#3278+ 5.#3290A+ 7.#3278CF+
2.#3277A+ "4.43278A+ "6.#3278T+ "8.#3277KN+
)END

Notes about Syntax

* If a CEF field has the same CSRGRP(x) value as a previous CEF field, and
both of them have RADIO(ON), then the new CEF field is displayed as an
input field.

» If a CEF field has a RADIO(ON) and a CSRGRP(x) value that does not
match an SAC with RADIO(ON) and a CSRGRP(x) value that comes after it,
then the CEF field is displayed as an input field.

* If an SAC field has a RADIO(ON) and a CSRGRP(x) value that does not
match a previous CEF field with RADIO(ON) and a CSRGRP(x) value, then
the SAC field is displayed as an output field instead of a radio button.

* If an SAC field is not followed by an output field to be used as the radio
button text, then the SAC field is displayed as an output field.

* If the radio button choice text wraps from one row to the next, then the text

on the next line is not displayed as part of the radio button choice text, but
as normal text.

CAUTION:

* Radio button groups can appear in a scrollable area, but choices that do
not appear in the visible portion of the area are not displayed.

 If a radio button group does appear in a scrollable area, and the panel
cannot be scrolled to show all of the choices and the CEF field, then it
might not be possible to select some of the choices in the radio button
group.

o If the CEF field is scrolled out of the visible area of a scrollable area, the
SAC field and the choice text field that follow it are displayed in the
panel body as text or output fields.

Recommendation
Because of the scrolling restrictions mentioned above, instead of using
radio buttons, try using a LISTBOX or DDLIST with the)LIST section for
your application.

REP(character)

For DBCS terminals, the REP keyword allows users to view, on panel
definitions, the displayable replacements for nondisplayable attribute
characters. This provides for the use of a wider range of BODY record attribute
characters that can be viewed on panel definitions. These replacement
characters are not visible on the actual panel displays.

You can specify any replacement character, but those that must be enclosed in
single quotes are as follows: < > () +; :, = blank.

Replacement characters are defined in the attribute section. Then, in the body
section of the panel definition, a record containing only the defined attribute
replacement characters is inserted immediately below any field defined by a
corresponding statement in the attribute section. Each replacement character
must be in the same column position as the attribute character position in the
field above.

196 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

When the panel definition, for example, is viewed for editing, the data field
and the characters that replace the attribute positions are both displayed.
However, when the panel is displayed, the record containing the replacement
characters is not displayed.

Any character immediately above an attribute replacement character in the
panel definition is overlaid by the attribute character’s hexadecimal code, not
by the displayable replacement character.

In the following example, hexadecimal codes 38, 31, 32, and 34 are in the field
attribute positions when the panel is displayed. Because these codes are not
visible on a display, replacement characters *, !, $, and # are specified for
viewing the panel definition.

When the panel is displayed, the attribute position above the asterisk (*)
contains hexadecimal 38; the one above the exclamation marks (!) contain
hexadecimal 31; the one above the dollar sign ($) contains hexadecimal 32, and
the one above the pound sign (#) contains hexadecimal 34. None of these
attribute characters is visible on the display, and the panel definition record
containing the replacement characters is not displayed.

The field attribute positions on the panel definition can contain any character,
illustrated as x in the example below, because they are overlaid by the
replacement characters when the panel is displayed.

Example:

JATTR
38 TYPE(INPUT) FORMAT(DBCS) REP(*)
31 TYPE(INPUT) FORMAT(EBCDIC) REP(!)
32 TYPE(TEXT) FORMAT(EBCDIC) REP($)
34 TYPE(TEXT) FORMAT(MIX) REP(#)

)BODY
+ DBCS input field %===>x VARDBCS +

*

[DBDBDBDBDBDBDBDBDB] ===>x VAREBC +
$!

Any characters used to replace shift-out or shift-in characters must be less than
hexadecimal 40 and must not be hexadecimal 00, OE, or OF.

The EXPAND keyword cannot be used for records containing only those
characters defined by the REP keyword.

SKIP(ON | OFF)
The SKIP keyword defines the autoskip attribute of the field. It is valid only
for text or output (protected) fields (OFF is the default).

ON Specifies that the cursor automatically skips the field. When a character
is entered into the last character location of the preceding unprotected
data field, ISPF positions the cursor at the first character location of the
next unprotected field.

OFF Specifies that the cursor does not automatically skip the field when the
condition described for SKIP(ON) occurs.
When you are running in GUI mode, the SKIP keyword is ignored.

TYPE(value)
Specifies the TYPE category of the panel element. The default is TYPE(INPUT).
The following TYPE values must be coded explicitly; it is not valid to assign

Chapter 6. Panel Definition Statement Reference 197

)JATTR Section

any of these values to dialog variables: AB, ABSL, CH, CHAR, CT, DATAIN,
DATAOUT, DT, ET, FP, GRPBOX, NT, PIN, PT, RP, SAC, SI, SUC, TEXT, WASL,
and WT. For simplicity, the values in examples are shown as literals.

value may be:

Value Description

AB AB unselected choices
ABSL AB separator line

CEF Choice entry field

CH Column heading

CHAR Character attributes in a dynamic area
CcT Caution text

DATAIN Input (unprotected) field in a dynamic area
DATAOUT Output (protected) field in a dynamic area
DT Descriptive text

EE Error emphasis

ET Emphasized text

FP Field prompt

GRPBOX Group box

INPUT Input (unprotected) field
LEF List entry field

LI List items

LID List item description

NEF Normal entry field

NT Normal text

OUTPUT Output (protected) field
PIN Panel instruction

PS Point-and-shoot

PT Panel title

RP Reference phrase

SAC Select available choices

SC Selected choice

SI Scroll information

SsuC Select unavailable choices
TEXT Text (protected) field

VOI Variable output information
WASL Work area separator line
WT Warning text

Note: TYPE values are grouped into four categories:

* Basic attribute types (TEXT | INPUT | OUTPUT). See
Il 7”7] S)Si

» Dynamic area types (CHAR | DATAIN | DATAOUT). See ESpecifying

 CUA Izg(anel—element types. See “CLIA Panel-Element Types” onl

« Other attribute types. See 'Qther Attribute Types” on page 203,

UNAVAIL(ON | OFF)
The UNAVAIL attribute keyword is used to show the availability of a choice in
conjunction with radio buttons, checkboxes, and pushbuttons.

The UNAVAIL attribute keyword can also be used with the LISTBOX, DDLIST,
and COMBO attribute keywords on choices specified in the)LIST section to
show the availability of a choice.

198 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

In GUI mode, if a LISTBOX, DDLIST, or COMBO choice is set as unavailable,
that choice does not appear in the LISTBOX, DDLIST, or COMBO list of
choices.

ON Specifies that the choice is not available. In GUI mode this means that
the choice cannot be selected in the current context. In host mode, you
can still select the choice. It is up to the application you are running to
display an error message or ignore the choice. You can use the VER
statement keywords LISTX or LISTVX to handle an unavailable choice
selection.

OFF Specifies the choice is available and can be selected. This is the default
setting.

WIDTH(w)
The value of w sets the width for a list box or drop-down list. Values can be
from 0 to 99. This parameter is only used when it is specified on an input field.
See the appropriate sections on list boxes, and drop-down lists for more
information.

Basic Attribute Types

For text (protected) fields, the information in the body of the panel following the
attribute character is the data to be displayed. Text fields can contain substitutable
variables which consist of a dialog variable name preceded by an ampersand (&).
The name and ampersand are replaced with the value of the variable, with trailing
blanks stripped, before the panel is displayed.

For input (unprotected) or output (protected) fields in the body of the panel, a
dialog variable name immediately follows the attribute character, with no
intervening ampersand. The name is replaced with the value of the variable prior
to displaying the panel. For input fields, any user-entered information is stored in
the variable after the panel has been displayed.

An output field is different from a text field in that an output field has a variable
name associated with the field. It also permits padding, capitalization, justification,
and refreshing of the data. There is no default attribute character for output fields.

ISPF initializes input fields prior to displaying them. They can be entered (or typed
over) by the user. ISPF also initializes output fields prior to displaying them, but
output fields cannot be changed by the user. Both input and output fields can have
associated caps, justification, and pad attributes. There is no default attribute
character for output fields.

The default values for the data-manipulation attribute keywords, by TYPE, are
summarized in

Table 8. Default Values for Data-Manipulation Keywords

TYPE CAPS JUST PADDING
TEXT N/A N/A N/A

INPUT ON LEFT PADC(USER)
OUTPUT ON LEFT PAD()

The ISPF basic attribute type rules for field types (defined in [Cable) determine
which attribute keywords can be used in conjunction with the basic attribute TYPE
keywords.

Chapter 6. Panel Definition Statement Reference 199

)JATTR Section

Keyword Valid For
CAPS Not valid for text fields
PAD Not valid for text fields
JUST Valid only for input and output fields
ATTN Valid only for text fields
SKIP Valid only for text or output (protected) fields
NUMERIC Valid only for input fields
PADC Valid only for input or output fields
FORMAT(EBCDIC | DBCS | MIX)
EBCDIC

Default value for input fields
MIX Default value for text and output fields
DBCS Valid for text, input, and output fields

Example of Basic Attribute Types: w shows a panel definition in which
an attribute section is included. As previously mentioned, an attribute section is
not required in a panel definition if only the default attributes are to be used in the
panel body.

/BATTR
* TYPE(TEXT) INTENS(HIGH) COLOR(WHITE) CAPS(OFF)
TYPE(TEXT) INTENS(HIGH) COLOR(BLUE) CAPS(OFF)
@ TYPE(TEXT) INTENS(LOW) COLOR(BLUE) HILITE(REVERSE)
? TYPE(TEXT) INTENS(LOW) COLOR(TURQ) CAPS(OFF)
_ TYPE(INPUT) INTENS(HIGH) COLOR(YELLOW)
$ TYPE(INPUT) INTENS(NON)
@ TYPE(OUTPUT) INTENS(LOW) COLOR(TURQ) CAPS(OFF)
)BODY

SERIAL NO.*===> SERNUM +&rb]l %

NAME:?&LAST, &FIRST

ADDRESS : sADDR1
oADDR2
oADDR3
oADDR4

+ + + +

YEARS EXPERIENCE:@YRS+

SALARY : SALARY + # PASSWORD#===>$PSW +
(Password is required for salary)

#
#
#
#
#
#
#
#
#
#
POSITION:gPOSIT +
#
#
#
#
#
#
#
* Enter#END+*command to terminate application.
#
)PROC
VER (&SERNUM,NB,NUM)
.ATTR(.CURSOR) = 'COLOR(RED) HILITE(BLINK)'
)END

- J

Figure 63. Attribute Section in a Panel Definition

Specifying Dynamic Areas

TYPE(DATAIN | DATAOUT | CHAR) can be specified for dynamic areas. Use
DATAIN and DATAOUT values only for specifying unprotected or protected
fields, respectively, within a dynamic area.

200 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section

You can specify the ATTN, CAPS, COLOR, HILITE, INTENS, JUST, PAD, PADC,
and SKIP keywords for DATAIN and DATAOUT fields. You can specify NUMERIC
for DATAIN fields. The defaults for CAPS, JUST, and padding are different from
those for other panel fields.

The default values for the DATAIN and DATAOUT attribute keywords, by TYPE,
are summarized in

Table 9. Default Values for DATAIN and DATAOUT Keywords

TYPE CAPS JUST PADDING
DATAIN OFF ASIS PAD(")
DATAOUT OFF ASIS PADC(")

For more information on TYPE(CHAR) see I!Character-I evel Attribute Support for
I 2 : é ” ; E] 45'

CUA Attribute Characteristics in Dynamic Areas: You can define dynamic area
DATAIN and DATAOUT attributes with CUA attribute characteristics. You do this
with the attribute keyword CUADYN(value) on the TYPE(DATAIN) or
TYPE(DATAOQOUT) attribute statements. DATAIN and DATAOUT fields that you
define with the CUADYN(value) keyword are not true CUA attribute fields, but
are DATAIN and DATAOUT fields that have taken on CUA attribute
characteristics.

The valid values of CUADYN for each TYPE keyword are:

Field Type Valid Attribute Keyword
DATAIN CEF, EE, LEF, NEF
DATAOUT CH, CT, DT, ET, FP, LI, LID, NT, PIN, PT, SAC, S,

SUC, VOI, WASL, WT

The CUADYN(value) keyword is ignored on any type other than DATAIN or
DATAOUT. The values allowed on the TYPE(DATAOUT) statement are ignored if
specified on the TYPE(DATAIN) statement, and the reverse is also true.

After the DATAIN or DATAOUT attribute is defined with CUA attribute
characteristics, the color, intensity, and highlighting of the attribute can only be
overridden using the CUA Attribute Color Change utility.

CUA Panel-Element Types
The CUA guidelines define the default colors and emphasis techniques for

individual panel elements. The CUA guidelines also request that application users
be allowed to change the color and emphasis for individual panel elements. To
conform with CUA principles, ISPF provides the following panel-element
attributes. The CUA Attribute Change Ultility, which is invoked with the
CUAATTR command or by selecting the CUA attributes... choice from the Colors
pull-down on the ISPF Settings panel, allows you to change the color and
emphasis for individual panel elements.

You can define those panel-element attributes that have a TYPE keyword value in

the panel attribute section. The panel-element attributes without a TYPE keyword
value are used internally by ISPF in response to user interactions.

Chapter 6. Panel Definition Statement Reference 201

)JATTR Section — TYPE Keyword

The following field types of the CUA panel-element attributes play a major role in
determining which attribute keywords can be used with the CUA panel-element
attribute values.

Field Type Valid Attribute Keyword

Input, Unprotected CEF, EE, LEF, NEF

Output, Protected VQOI, LID, LI

Text, Protected ABSL, CH, CT, DT, ET, FP, NT, PIN, PS, PT, SAC,
SI, SUC, WASL, WT

Text, Unprotected AB, RP

The ISPF CUA attribute type rules for field types (defined in [Cable 10) determine
which attribute keywords can be used in conjunction with the CUA panel-element
TYPE keywords.

[Cable 1d lists the CUA values for the TYPE keyword. With each TYPE keyword are
listed additional attribute keywords and their default values.

Table 10. CUA TYPE Default Keyword Values

TYPE

Keywd COLOR INTENS HILITE NUM-

Value * * * CAPS JUST PAD PADC SKIP ERIC FORMAT
AB WHITE HIGH NONE N/A N/A N/A N/A N/A N/A MIX
CEF TURQ LOW USCORE OFF LEFT B N/A OFF EBCDIC
EE YELLOW HIGH REVRSE OFF LEFT 6D N/A OFF EBCDIC
LEF TURQ LOW USCORE OFF ASIS B N/A OFF EBCDIC
NEF TURQ EJOW USCORE OFF LEFT B N/A OFF EBCDIC
RP WHITE HIGH NONE N/A N/A N/A N/A N/A N/A MIX
ABSL BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX

CH BLUE HIGH NONE N/A N/A N/A N/A OFF N/A MIX

CT YELLOW HIGH NONE N/A N/A N/A N/A OFF N/A MIX

DT GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

ET TURQ HIGH NONE N/A N/A N/A N/A OFF N/A MIX

FP GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

NT GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX
PIN GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

PS TURQ HIGH NONE N/A LEFT B OFF N/A MIX

PT BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX
SAC WHITE LOW NONE N/A N/A N/A N/A OFF N/A MIX

SI WHITE HIGH NONE N/A N/A N/A N/A OFF N/A MIX
SuC BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX
WASL BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX
WT RED HIGH NONE N/A N/A N/A N/A OFF N/A MIX

LI WHITE LOW NONE OFF ASIS B OFF N/A MIX
LID GREEN LOW NONE OFF ASIS B OFF N/A MIX
VOI TURQ LOW NONE OFF LEFT B OFF N/A MIX

202 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section — TYPE Keyword

Notes:

1. The attribute keywords whose value is denoted with N/A (not applicable) are
not valid to use in conjunction with the corresponding TYPE keyword value.

2. It is not valid to use the attribute keywords FORMAT, REP, and OUTLINE with
TYPE(AB). If used, the default values remain in effect.

3. You cannot change the keyword values for COLOR, INTENS, or HILITE. This is
indicated with an * in the preceding table. If you attempt to change these
keyword values, you will get an error condition. The exceptions are the CUA
attribute types NEF, LEF, VOI, LID, and LI. NEE LEF, VOI, LID, and LI support
the INTENS(NON) keyword value.

4. You can change the default values of COLOR, INTENS, and HIGHLIGHT by
using the CUAATTR command or by selecting the CUA attributes... choice
from the Colors pull-down on the ISPF Settings panel.

5. The character B in the PAD column stands for blank. The PAD and PADC
keywords are mutually exclusive, so when PAD is set to B (blank, X'40") PADC
cannot be set. The EE pad character is X'6D', underscore.

6. Three keywords not shown on this table are ATTN, REP, and OUTLINE. ATTN
always is N/A, REP is defined by the dialog, and OUTLINE is NONE.

7. Another keyword not shown on this table is CKBOX. CKBOX is only used with
TYPE(CEF). This keyword is ignored when running in non-GUI mode. For

more information about using CKBOX, see the LCKBOX Keyward” an page 179,

[Cable 11 lists the CUA panel-element attributes that are used internally by ISPF in
response to user interactions. These panel-element attributes do not have a TYPE
keyword, so you cannot code them in the panel attribute section. They are
considered as field-type text (that is, protected). The related attribute keywords and
their default values are shown for each.

Table 11. Internal Attributes without TYPE Keyword Values

Panel Element Attribute COLOR INTENS HILITE
AB Selected Choices YELLOW LOW NONE
PD Choices BLUE LOW NONE
Function Keys BLUE LOW NONE
Informational Message Text WHITE HIGH NONE
Warning Message Text YELLOW HIGH NONE
Action Message Text RED HIGH NONE
Panel ID BLUE LOW NONE

You can change the default values of COLOR, INTENS, and HIGHLIGHT by using
the CUAATTR command or by selecting the CUA attributes... choice from the
Colors pull-down on the ISPF Settings panel.

Other Attribute Types
The other attribute types consist of the Group Box (GRPBOX) and Selected Choice

(SC).

Group Box: A group box is a rectangle that is drawn around a group of related
fields. The upper-left corner of the box contains a label for the group. Group boxes
display in GUI mode only.

1. You may specify the INTENS(NON) keyword with the CUA type NEF.

Chapter 6. Panel Definition Statement Reference 203

)JATTR Section — TYPE Keyword

To specify a group box, use the type keyword GRPBOX. Its syntax is:
attribute-char TYPE(GRPBOX) WIDTH(wvalue) DEPTH(dvalue)

Where:

* attribute-char is the special character or 2-position hexadecimal value used to
define the group box area within the panel body section. The area is defined by
using the special character to position the upper-left corner of the group box in
the panel body section.

* woalue is the width of the group box, not including the borders. This value can
be 0 to 99. For example, a specification of WIDTH(9) means the box can contain
data 9 characters wide.

* dovalue is the depth of the group box, including the group box title line. This
value can be 0 to 99. A minimum of 2 lines must be defined for the box. The top
line is reserved for the label. For example, a specification of DEPTH(5) means
the box consists of a group box title and 4 lines of data.

In the panel body section, the name immediately following the special character
for the upper-left corner of the group box identifies the dialog variable that
contains the text for the group box label. In Eigure 64 on page 209, that name is
gbar. The name cannot be specified by using a Z-variable placeholder within the
panel body.

Some things to remember when defining group boxes are:

e Input/output/text fields should have ending attributes within the group box, or
blanks where the box border falls.

* Dynamic areas are allowed within group boxes, and should be entirely
contained within the box.

* Group boxes cannot be defined within dynamic areas.

* Dynamic areas and group boxes should not overlap.

* Scrollable areas are allowed within group boxes, and should be entirely
contained within the box.

* Group boxes are allowed within scrollable areas, and should be entirely
contained within the area.

* Scrollable areas and group boxes should not overlap.

* Group boxes should not be used with graphic areas.

* If the parameters WIDTH and DEPTH are not specified, the group box does not
display.

* If you specify WIDTH with no DEPTH, DEPTH(0) is assumed. This means the
group box ends at the bottom of the panel.

* If you specify DEPTH with no WIDTH, WIDTH(0) is assumed. This means the
group box does not display.

* If the group box DEPTH is coded as zero and the group box is within a
scrollable area, the group box expands to the bottom of the scrollable area.

e If the depth of the scrollable area is less than the group box DEPTH, the group
box ends at the bottom of the visible scrollable area. The group box DEPTH is
expanded when scrolling up, as long as the maximum group box depth has not
been reached and the group box title is within the displayed portion of the
scrollable area. After the group box title is no longer displayed in the scrollable
area, the group box no longer appears.

Note: Even though the type GRPBOX is considered an output field, it maps to the
CUA panel-element type Column Heading (CH). Therefore, its color,
intensity, and highlight values can only be changed through the CUA
Attribute Change Utility.

204 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section — TYPE Keyword

/)ATTR h
+ TYPE(TEXT) INTENS(Tow) SKIP(on)
% TYPE(TEXT) INTENS (HIGH) SKIP(on)
_ TYPE(INPUT) INTENS(HIGH) CAPS(ON)
TYPE(GRPBOX) WIDTH(44) DEPTH(7)
)BODY
L L L Group Box Example---==-=--cmcmmmmmmmememeem
%COMMAND ===> 7CMD
+ +
+ #gbar +
+ +
+ +Available Desired+ +
+ +Cruise Control Sunroof+ +
+ +AM/FM Stereo AM/FM Stereo +
+ +Power Brakes+ +
+ +Sunroof+ +
+ +
+ +
)INIT
&zemd = &z
&gbar = 'Options'
)JREINIT
&zemd = &z
) PROC
)END
o J

Figure 64. Group Box Definition

Selected Choice: The Select Choice (SC) type is an output (protected) field to be
used in conjunction with the UNAVAIL attribute keyword.

When TYPE(SC) is coded with the UNAVAIL(OFF) attribute, the field has the color,
intensity, and highlighting characteristics of TYPE(SAC).

When TYPE(SC) is coded with the UNAVAIL(ON) attribute, the field has the color,
intensity, and highlighting characteristics of TYPE(SUC).

You can use field overrides on the choices.

Relationship to Control Variables .ATTR and .ATTRCHAR

This section describes appropriate and inappropriate override conditions for CUA
and basic panel-element attributes. See [LATTR and ATTRCHAR” on page 26§ for
information on .ATTR and .ATTRCHAR.

e TYPE

CUA panel-element attribute TYPE keywords can be overridden by .ATTR or by
.ATTRCHAR. You can change the TYPE:

— From INPUT/CUA input types to OUTPUT/CUA output and input types
— From OUTPUT/CUA output types to INPUT/CUA input and output types
— From TEXT/CUA text types to TEXT/CUA text types

Some exceptions are:

— Only TYPE keyword values that have a field type of input can be overridden
with TYPE(EE)—error emphasis.

— CUA attribute types AB, RP, ABSL, and PS cannot be overridden, nor can
they be used to override text fields.

Chapter 6. Panel Definition Statement Reference 205

)JATTR Section — TYPE Keyword

206

— TYPE keyword GRPBOX can only be overridden with .ATTR(field), where
field is the dialog variable name for the group box as specified in the)BODY
section.

COLOR, INTENS, HILITE

If you change a basic attribute type to a CUA attribute type, the attribute takes
on the characteristics of that particular CUA type, including the default COLOR,
HILITE, and INTENS keyword values. For example, if you change a
TYPE(INPUT) INTENS(HIGH) attribute to TYPE(NEF), the default color for the
attribute changes from red to turquoise, the default color of the NEF attribute
type. Also, after you change a basic attribute type into a CUA attribute type, the
color, highlight, and intensity can only be overridden by using the CUA
Attribute Color Change utility.

For example, hoping to change the TYPE(INPUT) to CUA TYPE(NEF) with the
color pink, you enter the following:

.ATTR(FIELD1) = 'TYPE(NEF) COLOR(PINK)'

The result is that the field is changed to CUA TYPE(NEF), but when the
COLOR(PINK) keyword is processed a dialog error message is given stating that
the color of the CUA attribute cannot be overridden.

If you try to enter:
.ATTR(FIELD1) = 'COLOR(PINK) TYPE(NEF)'

The COLOR(PINK) keyword is processed before the TYPE(NEF) keyword. Thus,
no error message is given concerning the changing of the color of a CUA
attribute. However, when the TYPE(NEF) keyword is processed, the attribute
type is changed to the CUA default color, and subsequent attempts to change
the attribute’s color, intensity, or highlighting result in a dialog error message.

If you change a CUA attribute type to a basic attribute type, only the type
changes. The other characteristics associated with the type do not change. For
example, the color associated with the CUA type does not change unless you
specifically override the color using the COLOR keyword. If you change the
CUA type ET to basic type TEXT, the color remains turquoise unless you
purposely override it.

CAPS, JUST, PAD, PADC, SKIP, ATTN, NUMERIC, FORMAT, REP, OUTLINE
If the keyword is applicable on the JATTR statement, it can be overridden using

the attribute override statements. Those panel attribute keywords whose value is
denoted as N/A (not applicable) are not valid in attribute override statements.

CUADYN(value) keyword

The CUADYN(value) attribute keyword can be used in .ATTRCHAR statements
for DATAIN or DATAOUT attribute characters. The keyword values listed in

Z for DATAOUT
attributes can only override DATAOUT attribute characters. Those listed for
DATAIN attributes can only override DATAIN attribute characters.

Input fields with LISTBOX(ON Iname) or DDLIST(ON I name)

You can override input fields with LISTBOX(ON |name) or DDLIST(ON I name)
that are coded in the)ATTR section. You do this by using the .ATTR or
.ATTRCHAR statements to set LISTBOX, DDLIST, CSRGRP, WIDTH, and
DEPTH values for the input field.

Input fields with COMBO(ON | name)

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

)JATTR Section — TYPE Keyword

You can override input fields with COMBO(ON | name) that are coded in the
JATTR section. You do this by using the .ATTR or .ATTRCHAR statements to set
COMBO, CSRGRP, and DEPTH values for the input field.

Defining the Body Section

The)BODY (panel body) section of the panel definition specifies the format of the
panel as the user sees it. Each record in the body section corresponds to a line on
the display.

The section begins with the)BODY header statement, which can be omitted if there
are no preceding sections and no change to the default attribute characters. The
)BODY header statement and all associated keywords must be specified on the
same line. The panel body ends with any of the following statements:

*)MODEL

*)AREA

+)INIT

*)REINIT

+)PROC

*)HELP

+)PNTS

s)LIST

*)END.

)BODY

[KANA]
[WINDOW(width,depth)]
[CMD(field name)]
[SMSG(field name)]
[LMSG(field name)]

[ASIS]

[WIDTH(width)]

[EXPAND (xy)1

[DEFAULT (defldef2def3)]
[FORMAT (EBCDIC | DBCS|MIX)]
[OUTLINE([L] [R][0] [u]|BOX|NONE)]

Notes:

1. There are system-defined (default) areas for the display of messages and the
command field. You can specify alternate locations using the WINDOW, CMD,
SMSG, LMSG, and ASIS keywords on the)BODY header statement.

2. The WIDTH and EXPAND keywords on the)BODY header statement control
the width of a panel. Both keywords are optional. You can specify either or
both. However, if the panel definition width is greater than 80 characters, the
WIDTH keyword must be used. If the WIDTH keyword is used, the WIDTH
variable must be set in the variable pool before the panel is displayed.

3. DEFAULT, FORMAT, and OUTLINE can also be specified on the JATTR section
statement. The values specified on the) BODY section statement take
precedence.

where:

KANA
Include the KANA keyword when Katakana characters will appear within the
panel and you have not specified an extended code page using the)CCSID
section.

Chapter 6. Panel Definition Statement Reference 207

)BODY Section

WINDOW (width,depth)

Identifies the width and depth of the window that the Dialog Manager uses
when displaying the panel in a pop-up window. The values do not include the
panel borders; the Dialog Manager adds them outside of the dimension of the
width and depth values.

Note:

When you are running in GUI mode, the width you specify is respected
regardless of whether or not the panel is displayed in a popup window.
The depth is honored when the panel is displayed in a popup. If you
specify a depth greater than the depth of the panel definition, extra lines
are generated to fill the space. Any extendable areas (such as,
AREA(DYNAMIC), or AREA(SCRL) with EXTEND(ON)) might be
truncated at the popup depth.

For panels not displayed in a popup window, the depth is the minimum
of the specified depth and the actual number of) BODY records in the
panel definition. Extendable areas are not truncated. That is, the depth
expands to the length of the logical screen.

The width that you specify must be a numeric value greater than or equal to
the minimum width of 8 characters. The depth that you specify must be a
numeric value greater than 0.

Note: The width and depth cannot be specified by a dialog variable.

For panels that are not being displayed in a pop-up window (no active
ADDPOP), ISPF validates the width and depth values against the screen size
and issues an error message if either of the following is true:

* The width is greater than the current device width.

* The depth is greater than the current device depth.

For help panels and panels that are being displayed in a pop-up window (after

ADDPOP service), ISPF validates the width and depth values against the

screen size minus the frame and issues an error message if:

¢ The depth is greater than the screen depth minus 2.

¢ The depth is less than the screen depth minus 2 and the width is greater
than the screen width minus 3.

* The depth is equal to the screen depth minus 2 and the width is greater than
the screen width minus 4.

When running in GUI mode, the frame will be what you specified on
ISPSTART unless its ADDPOP was specified in a dialog. In this case, the frame
is a dialog frame.

The Dialog Manager recognizes the WINDOW keyword for panels displayed
in a pop-up window (after an ADDPOP service request has been issued), and
when running in GUI mode. If the panel is not being displayed in a pop-up
window and you are not in GUI mode, ISPF validates the keyword, but
ignores it. If the text on the panel you are defining exceeds the width of the
window, the panel fields do not wrap. All fields end at the window width.

Note: Text coded in column 1 of the panel body does not appear when a panel
is displayed in a pop-up window. This occurs because ISPF places a
field attribute in the column following the pop-up border character, due

208 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)BODY Section

to hardware requirements. Without the field attribute after the border
character, subsequent panel text would have the attributes (color,
intensity, and so on) of the window frame. Therefore, your panel text
should be coded so that it does not start in column 1 of the body if you
are going to display your panel in a pop-up window.

Attributes coded in column 1 of the panel body overlay the field attributes that
ISPF generates following the left side of the window frame. Therefore, an
attribute coded in column 1 of the panel will be in effect for subsequent text.

CMD(field-name)
Identifies the panel field (variable name) to be treated as the command field.
The field type must be a CUA input type. If the CMD keyword is omitted from
a)BODY statement, ISPF uses the first input field as a default command field.
You can specify that you do not want a command field by using CMD(). Do
not use this option for a table display. You must have a command field for a
table display.

SMSG((field-name)
Identifies the panel field (variable name) where the short message, if any, is to
be placed. The field type must be a CUA output type. If the message is longer
than the length of this field, the message is placed in a pop-up window. The
SMSG keyword does not effect placement of the TOP-ROW-DISPLAYED
indicator which is right-justified on the top line of the display, or just below
the action bar separator line if an action bar is defined.

LMSG(field-name)
Identifies the panel field (variable name) where the long message, if any, is to
be placed. The field type must be a CUA output type. If the message is longer
than the length of this field, the message is placed in a pop-up window.

Notes:

1. For CMD, SMSG, and LMSG the field-name must be within the) BODY
section, not within a scrollable area or table.

2. For long or short messages in pop-up windows, if the message originates
from panel processing, as in a verification error message, the message
pop-up window is placed adjacent to the field that is the object of the
validation.

3. The format of the command, long-message, and short-message fields must
not be FORMAT(DBCS). Because a FORMAT(EBCDIC) field does not
display DBCS characters correctly, FORMAT(MIX) is recommended.

4. For additional information about the placement of the command and long
message fields, see the ISPF User’s Guide

ASIS
Specifies that the command and long message fields are to appear on the
display as specified in the panel definition. When ASIS is specified, any user
request, using SETTINGS option 0 or by setting system variable ZPLACE, to
reposition the command and long message fields is ignored.

WIDTH(width)
The number of columns to use in formatting the panel. width can be a constant
or a dialog variable, including the system variable &ZSCREENW The specified
width must not be less than 80 or greater than the width of the terminal on
which the panel is to be displayed. If the WIDTH keyword is not specified, the
default is 80.

Chapter 6. Panel Definition Statement Reference 209

)BODY Section

EXPAND (xy)

The repetition delimiter characters. The delimiters can be used on any line
within the panel body to enclose a single character that is repeated to expand
the line to the required width. The starting and ending delimiter can be the
same character. If no delimiters are specified, or if any line does not contain
the delimiters, then the line is expanded to the required width by adding
blanks on the right. The delimiter characters cannot be specified with a dialog
variable.

Before the panel is displayed, it is formatted according to the WIDTH and
EXPAND keyword values as if the expanded format of the body were originally
coded in the panel definition. For example:

)BODY WIDTH(&EDWIDTH) EXPAND(//)

1 5 R S—
%COMMAND ===>_ZCMD // +SCROLL%===> SCRL +
+

%EMPLOYEE NUMBER:@EMPLN // @

In the title line, hyphens are repeated to expand the line to the width specified
by &EDWIDTH The command field and the employee number field would
both be expanded with repeated blanks.

If more than one repetition character appears in a line of the panel body, each
of the characters is repeated an equal number of times. For example:

)BODY EXPAND(#@)
TUTORIAL #-@ TITLE OF PAGE #-@ TUTORIAL

would become:
TUTORIAL ==--==mmmemm TITLE OF PAGE -----ceeeum- TUTORIAL

ISPF treats as an error a request to display a panel that is wider than the
physical screen or current logical screen for a 3290 terminal. ISPF displays a
box panel indicating the error. For the 3290, if a panel that is wider than 80
characters is being displayed, and the user attempts to divide the screen
vertically (SPLITV command), ISPF denies the request and displays an error
message. Remember that the panel is displayed as though the expanded format
of the body were originally coded in the panel definition. Therefore, be careful
when expanding text fields that contain substitutable variables, so that
meaningful text is not truncated. For example:

)BODY EXPAND(//)
TUTORIAL /-/ &VARL /-/ TUTORIAL

would become:
TUTORIAL ==-=mmmmmmmmmme FAT7.Y: I — TUTORIAL

Then, if &VARI had the value “ABCDEFG” when the screen was displayed, the
following line would result:

TUTORIAL == =mmmmmmmmmem ABCDEFG ======mmmmmmmmmm TUTORI

To avoid this problem, provide a few blanks at the end of the text string, as
follows:

TUTORIAL /-/ &VAR1 /-/ TUTORIAL +

[Lable 12 on page 211 and [Table 13 on page 211 describe the display width, data

expansion width (resulting from EXPAND keyword on the)BODY statement),

210 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)BODY Section

and the pop-up window width based on various WINDOW /WIDTH keyword
combinations.

Table 12. Display in Primary Window

WINDOW/WIDTH

Combinations

DISPLAY

EXPANSION

no WINDOW, no WIDTH

WIDTH (def. 80)

WIDTH (def. 80)

WINDOW, no WIDTH

WIDTH (def. 80)

WINDOW value

no WINDOW, WIDTH WIDTH WIDTH value
WINDOW <= WIDTH WIDTH WINDOW value
WINDOW > WIDTH ERROR ERROR

Table 13. Display in Pop-up Window

WIND.OWIWIDTH DISPLAY EXPANSION WINDOW
Combinations

no WINDOW, no
WIDTH

WIDTH (def. 80)

WIDTH (def. 80)

(76, 22)

WINDOW, no

WIDTH WIDTH (def. 80) WINDOW value WINDOW (w, d)
no WINDOW,

WIDTH WIDTH WIDTH value (76, 22)
WINDOW <=

WIDTH WIDTH WINDOW value WINDOW (w, d)
WINDOW > WIDTH ERROR ERROR ERROR

Note: ISPF will issue an error message if you attempt to display a panel in a
pop-up window where the WINDOW width value is greater than the
width of the underlying panel .

DEFAULT (def1def2def3)

You can use the DEFAULT keyword to specify the characters that define a
high-intensity text field, a low-intensity text field, and a high-intensity input
field, respectively. The value inside the parentheses must consist of exactly
three characters, not enclosed in single quotes and not separated by commas or
blanks.

The DEFAULT keyword can also be specified on the)ATTR section statement.

FORMAT(EBCDIC | DBCS | MIX)

The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is
FORMAT(EBCDIC). These two default values can be changed by using the
)JATTR statement or the) BODY statement. These values, in turn, can be
overridden if explicitly specified on a subsequent statement. For example, the
net result of the following two statements is FORMAT(DBCS):

)BODY FORMAT (MIX)
$ TYPE(INPUT) FORMAT(DBCS)

OUTLINE([LI[R][O][U] BOX | NONE)

The default value for OUTLINE is NONE. The default value for TYPE(INPUT)
and TYPE(DATAIN) fields can be specified on the)JATTR or)BODY statement
and can be overridden by the OUTLINE keyword. For example:

)BODY OUTLINE(U)
@ TYPE(INPUT) OUTLINE(BOX)

Chapter 6. Panel Definition Statement Reference 211

)BODY Section
A Sample Panel Body Section

The sample panel definition, shown in [Figure 63, consists of a panel body followed
by an)END control statement. It has no attribute, initialization, reinitialization, or
processing sections, and uses the default attribute characters.

This data entry panel has 11 input fields (for example, ZCMD and TYPECHG)
indicated with the underscore attribute character. It also has a substitutable
variable (EMPSER) within a text field. The first two lines of the panel and the
arrows preceding the input fields are all highlighted, as indicated by the percent
sign attribute characters. The other text fields are low intensity, as indicated by the
plus sign attribute characters.

%COMMAND ===>_ZCMD %

N o°

EMPLOYEE SERIAL: &EMPSER
TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST %===>_LNAME +
FIRST %===>_ FNAME +
INITIAL%===>_ I+

HOME ADDRESS:
LINE 1 %
LINE 2
LINE 3
LINE 4

> ADDRI
> ADDR2
> ADDR3
> ADDR4

mom o
nm nmn nn
n - n n
+ + + +

S OF oF of

HOME PHONE:
AREA CODE %
LOCAL NUMBER%

> PHA+
> PHNUM +

— 4+ + + + + +++ A+ A+

End

Figure 65. Sample Panel Definition

Eigure 66 on page 213 shows the panel as it appears when displayed, assuming
that the current value of EMPSER is 123456 and that the other variables are

initially null.

212 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)CCSID Section

———————————————————————————— EMPLOYEE RECORDS —-——======= === ————— o

EMPLOYEE SERIAL: 123456
TYPE OF CHANGE ===> (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:

LAST ===>
FIRST ===>
INITIAL ===>

HOME ADDRESS:

LINE 1 ===>
LINE 2 ===>
LINE 3 ===>
LINE 4 ===>
HOME PHONE:
AREA CODE ===>

LOCAL NUMBER ===>

Figure 66. Sample Panel—When Displayed

Defining the CCSID Section

The)CCSID section identifies the Coded Character Set Identifier used in the panel
definition.

)CCSID [NUMBER (xxxxx)]

where:

NUMBER (xxxxx)
The CCSID of the EXTENDED CODE PAGE as defined by Character Data

Representation Architecture. Refer to I'Supported CCSIDs” on page 314 for

which CCSIDs are supported.

The)CCSID section must be the first section in the panel as illustrated in the
following example:
)CCSID NUMBER(00037)

) PANEL
)BODY

%COMMAND ===>__ ZCMD

)END

If the CCSID section is used, the single-byte text characters in the)BODY,
)JMODEL, or)AREA section of the panel are translated to the equivalent character
(or a period if the character does not exist) in the terminal code page for display.
ISPF scans the panel for a text attribute, notes the position, and then scans for a
non-text attribute. When the non-text attribute is found, ISPF translates the text
between the text attribute and the non-text attribute. Thus you must have one text

Chapter 6. Panel Definition Statement Reference 213

)CCSID Section

attribute defined prior to any text you want translated. This translation occurs only
if the code page indicated by the CCSID is different from the code page of the
terminal.

The ISPF program scans the panel record for a text attribute, notes the position,
then scans for a non-text attribute. When the non-text attribute is found, ISPF
translates the text found between the text attribute and the non-text attribute.
Therefore, you must have one text attribute defined prior to any text you want
translated.

All characters in the panel source that are not in the) BODY text must be in the
Syntactic Character Set:

e A-Z

° a—z

* 0-9

C +<=>%&*"’
° ()/_'-/:;?

Note: Lowercase a—z can be used for any CCSID supported by ISPF except the
Japanese (Katakana) Extended CCSID 930.

See 4 ”

Defining the END Section

The)END section identifies the end of the the panel definition. It is a required
section.

)END

The definition consists only of the)END statement. Any lines placed after the END
statement are ignored.

) PANEL

)BODY

%COMMAND ===>__ZCMD

)END

Defining the HELP Section

The)HELP (help) section of the panel definition specifies what help panel, if any,
is displayed when help is requested for a particular element defined on the panel.
Help can be requested for a field, an action bar choice, or a pull-down choice bj/
including a statement in the source panel definition help section. See

Phrase Help” on page 94 for a discussion on requesting help for reference phrases.

YHELP FIELD(field-name) [PANEL(help-panel-name) | MSG(msg-name) | PASSTHRU]

where:

FIELD(field-name)
The name of the source panel element (input selection field, action bar choice,
dynamic area name, and so on). When the PANEL keyword is used, a help
panel is displayed when help is requested for an element. When the MSG
keyword is used, a message is displayed when help is requested for an

214 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

JHELP Section

element. When the PASSTHRU keyword is used, control returns to the dialog
when help is requested for an element. Field-name can be a variable. If the
field-name variable value is not found, the Tutorial table of contents panel

(ISR00003) is displayed.

PANEL(help-panel-name)
The name of the help panel associated with the field. Help-panel-name can be
a variable.

MSG (msg-name)
The name of the message associated with the field. The msg-name can be a
variable. When help is requested on the field that specified MSG(msg-name) in
the)HELP section, the message is displayed. The short message appears in the
upper right-hand corner of the panel. The long message box is placed at the
field on the screen.

PASSTHRU
The PASSTHRU keyword is intended for use on dynamic-area fields. When
help is requested on the field, control returns to the dialog. No help panel or
message is displayed.

Notes:

1. Using the PASSTHRU keyword on reference phrases within scrollable areas
can cause unpredictable results.

2. System variables ZCURFLD and ZCURPOS can be used to determine the
cursor position. You must define a)PANEL section for ZCURFLD and
ZCURPOS to be set.

Specifying the Value for the Field-Name and Help-Panel-Name
When modifying or adding statements to the)HELP section of a new or existing
source panel, you must adhere to these rules to prevent unexpected results and
errors when the source panel is processed.

The field-name must have the following characteristics:

* 1-8 characters in length

e First, or only, character must be A-Z or a—z

* Remaining characters, if any, must be A-Z, a-z, or 0-9.

Lowercase characters are translated to their uppercase equivalents.

The help-panel-name must have the following characteristics:
* 1-8 characters in length

* The first (or only) character must be A-Z or a-z

* Remaining characters must be A-Z, a-z, or 0-9.

Lowercase characters are translated to their uppercase equivalents.

The action bar choice and pull-down choice elements, have no associated field
name. ISPF uses the following convention when generating a field-name value for
these panel elements.
Action bar choice field-names will have the following format:
ZABCxx
where:
ZABC The field-name prefix
xx The number of the action bar choice
Pull-down choice field-names have the following format:
ZPDCxxyy
where:

Chapter 6. Panel Definition Statement Reference 215

)JHELP Section

ZPDC The field-name prefix
xx The number of the action bar choice
yy The number of the pull-down choice within this action bar choice

ng A on_ba nolice a ne BOD eciion on-page

See [Spec g-Actic ge 15
determine the numbering sequence ISPF uses for these panel elements.

Defining the Initialization Section

The initialization section specifies the initial processing that is to occur prior to
displaying the panel.

)INIT

It begins with the)INIT header statement and ends with either the)REINIT,
)PROC,)JHELP, or)END header statement. The number of lines allowed in an
)INIT section depends upon the storage size available for panel processing at
execution time.

The variables that are displayed in the panel body reflect the contents of the
corresponding dialog variables after the)INIT section has been processed, just
prior to display of the panel. The input fields are automatically stored into the
corresponding dialog variables immediately following display and prior to
processing the)PROC section.

See [Farmatting Panel Definition Statements” on page 224 for additional

information.

Defining the LIST Section

The)LIST (list) section of the panel definition specifies what list choices appear on
your screen. It can be useful if the selection list is displayed in a scrollable area
and some of the list choices might not be visible. With the)LIST section coded, all
of the choices are built into the list box, drop-down list, or combination box even if
some are not immediately visible in the scrollable area.

It is used in conjunction with the attribute keywords DDLIST(name),
LISTBOX(name), and COMBO(name). These keywords match the list box attributes
to the corresponding list choices found in the)LIST list-name section of the panel.

The)LIST section, if you use it, follows the)PNTS section if one exists. It follows
the)HELP section if you have no)PNTS section. If you have neither the)PNTS
section nor the)HELP section, the)LIST section follows the)PROC section of your
panel definition. The)LIST section contains the following parameters when used
with list boxes and drop-down lists:

)LIST list-name
VAL(value) CHOICE(value)

The)LIST section contains the following parameters when used with combination
boxes:

YLIST list-name
CHOICE(value)

216 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)LIST Section

where:

list-name
The name of the list. It must match a LISTBOX(name), DDLIST(name), or
COMBO(name) specified on an input field in the JATTR section. The name can
be 1 to 8 characters long. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can
be used in the name, but the first character cannot be numeric. Lowercase
characters are converted to their uppercase equivalents.

VAL(value)
This parameter is used for list boxes and drop-down lists only. It is not used
for combination boxes. The value can be a variable or text. It must be 3
characters or less (more than three characters are truncated without warning)
and is used as the value placed into the CEF field when the choice is selected.

CHOICE(value)
This parameter is used with list boxes, drop-down lists, and combination
boxes. The value can be a variable or text. If the value is a variable, the
ampersand (&) must be in the first column following the left parenthesis of the
CHOICE keyword. The length of the variable data is limited to 99 single-byte
characters. If the varible data is longer than 99 bytes, it will be truncated.

CHOICE (&var)

If the value is a single word text string it is not necessary to enclose it in single
quotation marks.

CHOICE(3278)

If the value is more than a single word of text, the phrase must be enclosed in
single quotation marks.

CHOICE('3278 terminal type')

Literal values can be split between lines by coding a plus sign (+) as the last
character on each line that is to be continued. The plus sign is used as a
continuation character.

CHOICE('This is an example of a continuation +
of the literal string')

The)LIST section must contain a list-name. For list boxes and drop-down lists, it
also must contain a VAL and a CHOICE for each of the choices to display in the
list. Each entry in the)LIST section must contain the keywords in the following
order: VAL (value) CHOICE(value). For combination boxes, the list section must
contain a CHOICE(value) for each of the choices to display in the list. The data in
the lists is displayed in the order in which you define the choices in the)LIST
section.

Defining the Model Section

The)MODEL (model) section is used only for table display panels. It defines how
each table row is to be formatted. Because the model section is unique to table

display panels, it is discussed in I‘Defining Table Display Panels” on page 129.

Defining the Panel Section

The)PANEL (panel) section specifies the keylist that will be used for the panel,
identifies where the keylist is to be found, controls specific CUA display

Chapter 6. Panel Definition Statement Reference 217

)PANEL Section

characteristics of the panel, specifies the image that will be used on the panel, and
specifies the row and column placement for the upper left-hand corner of the
image.

The IMAGE keyword is used to show images on panels in GUI mode. It is ignored
in 3270 mode. ISPF supports image files in the Graphical Interchange Format (GIF).

ISPF ships image files in sample library SISPSAMP. The panel ISR@PRIM uses
three of the GIF image files: ISPFGIFL, ISPFGIFS, and ISPEXIT.

To use images, store the image files on the host in a partitioned data set and
allocate this image data set to ddname ISPILIB before invoking ISPF. For more
information about allocating this image library, see the section called Allocating
Optional Image ISPF Library in the ISPF User’s Guide.

Images can be placed on unused panel space. They should not be positioned on
text or panel fields. When an image is requested, ISPF does a query and file
transfer to download the image specified to the workstation. The image is
downloaded to the image path, which the user specifies from the GUI Panel Settings
window (Option 0). See the ISPF User’s Guide for details. If no image path is
specified, ISPF downloads the images to the workstation’s working directory.

)PANEL [KEYLIST (keylist-namel[,keylist-applid,SHARED])]
[IMAGE (image-name,row,col)]

where:
KEYLIST

keylist-name
Required when KEYLIST is specified. The keylist name must have the
following characteristics:
* 1-8 characters in length
* First, or only, character must be A-Z or a—z
* Remaining characters, if any, must be A-Z, a-z, or 0-9.

Lowercase characters are translated to their uppercase equivalents.

keylist-applid
Optional. Application ID used at run-time to find the keylist. It has a
maximum length of 4 characters, the first of which must be alphabetic.
Any remaining characters can be alphabetic or numeric.

SHARED
Optional. When specified, ISPF looks only at the shared keylist for the
panel. If the user issues the KEYLIST OFF or KEYLIST PRIVATE
commands, they have no effect; the keylist in xxxxKEYS table allocated to
ISPTLIB is used.

IMAGE

image-name
Required when IMAGE is specified. The image-name identifies the image
to be displayed. The image-name can be a variable, which should follow
ISPF’s variable naming conventions.

218 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)PANEL Section

Note: ISPF downloads images only in panel initialization processing.
Variables for images should only be set in the)INIT section of your
panel definition. Variables for images in panel sections other than
the)INIT section are not supported unless the image exists on the
PC Image Path you specifiy.

row,col
The row and column specifiy the starting position, upper left-hand corner,
of the image. The row and column can be numeric or variables. Variables
for the row and column should follow ISPF’s variable naming conventions.
If no row or column is specified, you must code commas as place holders,
and the row and column will default to 0,0. For example:

IMAGE (imagea,,)

It is left to the dialog developer to select appropriate row and column
values such that the image will display. ISPF checks for valid numeric
values 0-9, but does not check for any limits.

When a keylist-name is specified without a keylist-applid, ISPF searches for the
named keylist in the:

 Keylists for the application ID that is currently running

* ISP applid (if not found in the above applid and the name of the application ID
is not ISP).

If the KEYLIST keyword is not found on the)PANEL statement, then the default
keylist, ISPKYLST, is used.

Before run-time processing, any keylist (other than the default ISPKYLST)
referenced in a panel’s definitions must have been created and stored. If you add
or modify the)PANEL KEYLIST statement in the definition of an existing source
panel, you must create the keylist if it does not already exist. New keylists can be
created using ISPF option 0 or using the Dialog Tag Language.

Keylist variables

The following variables are used by the keylist function:

ZKLUSE
Y or N, this variable indicates whether the keylists are being used for an
application ID or not. For example, if KEYLIST OFF has been issued,
&ZKLUSE is N. This variable is stored in the application profile. The
VPUT service can be used by your application to set this value. Putting a
value of N in &ZKLUSE to the profile pool is equivalent to issuing the
KEYLIST OFF command. Putting a value of Y in &ZKLUSE to the profile
pool is equivalent to issuing the KEYLIST ON command.

ZKLNAME
contains the name of the keylist of the panel currently being displayed. If
no keylist is defined for the panel or the keylist is not being used,
&ZKLNAME is blank.

ZKLAPPL
contains the application ID where the keylist of the panel currently being
displayed is found. If no keylist is defined for the panel or the keylist is
not being used, &ZKLAPPL is blank.

ZKLTYPE
P or S, this variable indicates that the keylist for the panel currently being
displayed is a private (P) copy defined in the profile table, or a shared (S)
copy defined in the xxxxKEYS table (where xxxx is the application ID of
the keylist (ZKLAPPL)).

Chapter 6. Panel Definition Statement Reference 219

)PANEL Section

ZKLPRIV
Y or N, this variable indicates that ISPF is to look at both the private and
shared keylist (Y, the default) or that it is to look at only the shared
keylists (N). This variable is stored in the application profile. The VPUT
service can be used by the application to set this value. Putting a value of
N in &ZKLPRIV to the profile pool is equivalent to issuing the KEYLIST
SHARED command. Putting a value of Y in &ZKLPRIV to the profile pool
is equivalent to issuing the KEYLIST PRIVATE command.

Note: This variable shows and determines where ISPF looks for a keylist.
&ZKLTYPE is a non-modifiable variable that shows where ISPF
found the keylist.

CUA Display Characteristics

The)PANEL section controls specific CUA display characteristics of a panel.
Specifying the)PANEL statement in the panel source definition affects the same
display characteristics controlled by selecting the Panel display CUA mode option
on the ISPF Settings panel. See the ISPF User’s Guide for more information.

The)PANEL statement controls the following CUA display characteristics:
 Display and placement of the command line and long message text

* Building and display of the named keylist in the Function Key Area (FKA)
* Handling of undefined or null function key definitions

* Execution of the CANCEL and EXIT commands

* Setting of three system control variables that relate to the position of the cursor
after panel display.

Command Lines and Long Messages

When the)PANEL section is used, the ISPF default command line placement is at
the bottom of the panel (above the function key area, if it is displayed). Long
messages are displayed above the command line. To override the ISPF default, go
to the ISPF Settings panel and specify Command line placement - ASIS. This
setting places the command line and long message as they are specified in your
panel definition (usually at the top of the panel). See ISPF User’s Guide Changes to
the)BODY section also affect command line and long message placement. The
ASIS keyword on the)BODY section overrides ISPF defaults. The WINDOW
keyword also affects the displaying of the command line and long messages. See

You can specify to not have a command line by including the keyword CMD()
with no value on the)BODY statement. This is valid only for displaying panels
with the DISPLAY service. In this case, the default position of the long message is
at the bottom of the panel above the FKA, if it is displayed. Panels (tables)
displayed with the TBDISPL service must specify a command area either by coding
a CMD() with a value or by coding the system control variable ZCMD in the panel
body.

Because the)PANEL statement affects the same display characteristics as if you
had selected the Panel display CUA mode option on the ISPF Settings panel, the
color and intensity of the short and long messages is affected by the presence of
the)PANEL statement. If you specify the LMSG or SMSG keywords on the)BODY
statement, you control the color and intensity in which both the short and long
messages are displayed, regardless of CUA mode or the presence of a) PANEL

statement. [ahle 19 on page 293 illustrates default message placement.

220 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)PANEL Section

Keylist Building and Display
The format and display of the named keylist or an ISPF default keylist for a panel
containing the)PANEL statement is as follows:

¢ The maximum number of function keys that can be formatted on each line is
displayed.

* Each displayed function key definition appears as Fnn=label or Fn=label (where
nn or n is the numeric value of the function key).

ISPF attempts to build the FKA with the named keylist or an ISPF default keylist.
However, the display of the keylist in the FKA area depends upon the settings of
the FKA or PEFSHOW commands and the keylist format (SHORT or LONG)
specified for the function key definition. The number and set of function keys
displayed also varies.

Note: The system control variable ZPFCTL setting is ignored for panel source
definitions that contain the)PANEL statement.

Undefined or Null Function Keys
When you press an undefined or null function key, ISPF displays an error message.

CANCEL and EXIT Execution

When the CANCEL or EXIT commands (specified on a function key or entered in a
command field) are processed, ISPF returns the entered command in the system
control variable ZVERB and sets a return code of 8 from the display service.

If the panel contains an action bar and the cursor is on the action bar, CANCEL
moves the cursor to the panel body. ZVERB is not updated.

Setting System Control Variables
When panels with a)PANEL section specified are displayed, ISPF sets the
following system control variables:

ZCURFLD
Name of the field (or list column) containing the cursor when the user
exits the panel.

ZCURPOS
Position of the cursor within the field specified by ZCURFLD when the
user exits the panel.

ZCURINX
Current row number of the table row containing the cursor.

These system variables are stored in the function pool as output variables.

Defining the Point-and-Shoot Section

The)PNTS (point-and-shoot) section of a panel definition specifies what fields, if
any, are point-and-shoot fields. Input and/or output fields are specified as
point-and-shoot fields by the use of the attribute keyword, PAS(ON). Text fields are
specified as point-and-shoot fields by the attribute type keyword, TYPE(PS). For
each panel field specified as a point-and-shoot field, there must be a corresponding
entry in the)PNTS section. If a field specified as a point-and-shoot field has no
corresponding entry in the)PNTS section, no action will be taken if the
point-and-shoot field is selected. The examples below show a)PNTS section
point-and-shoot phrase definition for input/output fields and for text fields.

Note: You can use option 0 (Settings) to set the tab key to move the cursor
point-and-shoot fields. This changes output fields to input fields, but data is

Chapter 6. Panel Definition Statement Reference 221

)PNTS Section

not altered. However, if a variable is used on an output field that is changed
to an input field by the tab to point-and-shoot option, and the variable is
VDEFINEd to the application, the variable will be truncated. In this case, the
application developer should have a temporary panel variable.

GUI Mode: If you are running in GUI mode, fields designated as point-and-shoot
output and text fields will appear as pushbuttons. Point-and-shoot input fields will
appear as selection fields.

Large pushbuttons are point-and-shoot output or text fields which display with a
depth greater than one. Large pushbuttons are built by coding the DEPTH
keyword on the point-and-shoot statement in the)PNTS panel section.

In GUI mode, images can be displayed on these pushbuttons. The keywords that
provide the support for images are DEPTH, IMAGE, IMAGEP, TEXT, and PLACE.
These keywords are used in GUI mode and ignored in 3270 mode.

Although you can define images on point-and-shoot output fields and
point-and-shoot text fields, if you define an image for a point-and-shoot output
field, the field cannot be a Z-variable in the panel body.

You can specify where to place an image on a large pushbutton. It can be above or
below the pushbutton text, or to the left or right of the pushbutton text. When you
specify the placement of the image to be above or below the text, the image is
always centered relative to the text.

ISPF ships sample images in sample library SISPSAMP. The panel ISR@PRIM uses
three of the GIF image files: ISPEGIFL, ISPFGIFS, and ISPEXIT.

To use images, store the image files on the host in a partitioned data set and
allocate this image data set to ddname ISPILIB before invoking ISPF. For more
information about allocating this image library see the section called Allocating
Optional Image ISPF Library in the ISPF User’s Guide.

When an image is requested, ISPF does a query and file transfer to download the
image specified to the workstation. The image is downloaded to the image path that
you specify from the GUI Panel Settings window (Option 0). See the ISPF User’s
Guide for details. If no image path is specified, ISPF downloads the image to the
workstation’s working directory.

)PNTS

FIELD(field name|ZPSxxyyy) VAR(value) VAL(value)
[DEPTH(depth)] [IMAGE(image-name)] [IMAGEP(image-name)]
[TEXT('text')] [PLACE(a,b,l,r)]

Note: Each entry in the)PNTS section must contain the keywords in the following
order: FIELD, VAR, VAL, [DEPTH]. When defining large pushbuttons or
large pushbuttons with images the DEPTH keyword must immediately
follow the VAL keyword on the)PNTS entry statement. The remaining
keywords, [IMAGE] [IMAGEP], [TEXT], [PLACE], follow the DEPTH
keyword. Both the DEPTH keyword and the TEXT keyword must be coded
on the PNTS entry for point-and-shoot text fields if you are defining a large
pushbutton, or an image for the field.

where:

222 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)PNTS Section

FIELD(field_name | ZPSxxyyy)
The name of the field on the panel that this statement controls.

For point-and-shoot input/output fields, the format is:

FIELD(field_name)
where:

field name
The name of the field on the panel that this statement controls.

For point-and-shoot text fields, the format is:

FIELD(ZPSxxyyy)
where:

XX 00 for a point-and-shoot field defined in the) BODY section and 01
to 99 for the number of the scrollable area in which the
point-and-shoot text field is defined.

Each scrollable area is assigned a sequential number based on its
relative position within the panel body. The scrollable area closest
to the upper-left corner of the panel body is assigned number 01.
Each additional scrollable area, scanning left to right, top to
bottom, is assigned the next sequential number. A maximum of 99
scrollable areas in any given panel can contain point-and-shoot text
fields.

yyy 001 to 999 for the relative number of the point-and-shoot text field
within the panel body or within a particular scrollable area.

A point-and-shoot text field can wrap around multiple terminal
lines in panels that are not displayed in a window. A
point-and-shoot text field that logically wraps in a pop-up window
requires the beginning of each wrapped line to contain a PS field
attribute and an entry must exist in the)PNTS section for each
wrapped line. This is also true for panels containing the
WINDOWY() keyword that are not displayed in a pop-up window.
The additional)PNTS section entries should result in the same
action as the first line of the wrapped text field.

VAR (value)
The name, or a variable containing the name, of the variable to be set
when the field named in this)PNTS statement is selected. If the value is a
variable, an ampersand (&) must be in the first column following the left
parenthesis of the VAR keyword, and it must follow dialog variable
naming conventions. If the value is a variable it is limited to the leading
ampersand plus 7 characters.

VAL (value)
The value assigned to the variable named in this statement. The value can
be a variable or text. If the value is a variable, an ampersand (&) must be
in the first column following the left parenthesis of the VAL keyword. The
length of the variable data is limited to 255 single-byte characters. If the
variable data is longer than 255 bytes, it is truncated. If the value is a
variable it is limited to the leading ampersand plus 7 characters.

VAL (&var)

If the value is a single word text string it is not necessary to enclose it in
single quotation marks.

VAL (Batch)

Chapter 6. Panel Definition Statement Reference 223

)PNTS Section

If the value is more than a single word of text, the phrase must be
enclosed in single quotation marks.

VAL('List of products')

Literal values can be split between lines by coding a plus sign (+) as the
last character on each line that is to be continued. The plus sign is used as
a continuation character.

VAL('This is an example of a continuation +
of the literal string')

DEPTH(depth)
The depth of the point-and-shoot field (pushbutton). The DEPTH keyword
is required and must be specified immediately following the VAL keyword
on the)PNTS section statement. ISPF allows depth values from zero to
sixty-two (0-62). Sixty-two is the maximum screen depth. It is up to the
dialog developer to define the depth such that other items on the panel
body will not be overlaid by the point-and-shoot field (pushbutton). If
depth is specified as 0, the default depth of two (2) is used. The depth can
be a variable, whose value is from 0-62.

IMAGE(image-name)
The image-name identifies the image to be displayed. The image-name is
used when the images are stored on the host in a partitioned data set, with
a data set definition of ISPILIB. The image-name must follow TSO data set
member naming conventions. The image-name can be a variable, which
should follow ISPF’s variable naming conventions.

IMAGEP(image-name)
The image-name identifies the image to be displayed, when the
point-and-shoot pushbutton is pressed. For example, a pushbutton might
normally display a closed door image, but when you press the button, an
opened door image could appear. The image-name is used when the images
are stored on the host in a partitioned data set, with a data set definition of
ISPILIB. The image-name must follow TSO data set member naming
conventions. The image-name can be a variable, which should follow ISPF’s
variable naming conventions.

Note: ISPF downloads images only in panel initialization processing.
Variables for images should only be set in the)INIT section of your
panel definition. Variables for images in panel sections other than
the)INIT section are not supported unless the image exists on the
PC Image Path you specifiy.

TEXT(text’)
The TEXT keyword is required for point-and-shoot text fields. The text ties
the point-and-shoot text field defined in the panel body with its
point-and-shoot entry in the)PNTS section. The text must match the text
for the point-and-shoot field in the body. If the text in the body contains
variables, the text of the TEXT keyword must allow for the possible
expansion once the variable has been substituted, just as the
point-and-shoot text field in the body should. If the text consists of more
than a single word of text, the phrase must be enclosed in single quotation
marks.

PLACE(@lblllr)
The values a (above), b (below), I (left), and r (right) specify the position of
the image relative to the pushbutton text. The PLACE keyword is optional.
If not specified, the default image position is above (a) the text in the

224 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

)PNTS Section

pushbutton. The text for pushbuttons is always centered within the
pushbutton. The text for a pushbutton does not wrap, thus one line of text
is the maximum. The image is placed either above or below the text, or to
the left or the right of the text. It is up to the dialog developer to allow for
space for the pushbutton text and the image. The value for PLACE can be
a variable whose value is a, b, Lor r.

Example:

) PANEL
)ATTR

$ TYPE(PIN)

} TYPE(PS)

+ TYPE(NT)

| AREA(SCRL) EXTEND(ON)

! TYPE(OUTPUT) PAS(ON) COLOR(RED)

* TYPE(OUTPUT) PAS(ON) COLOR(BLUE)
@ TYPE(TEXT) INTENS(LOW) COLOR(RED) PAD(NULLS)
@ TYPE(TEXT) INTENS(LOW) COLOR(BLUE) PAD(NULLS)
BODY WINDOW(60,23)

COMMAND ===>_7Z(CMD

Press }DEFAULTS$to reinstate defaults

+ 9 9 A ° A —

|s1
)AREA S1
+
+
+ ¢BLUE*BLUEl
+ GREDIRED1
YINIT
.CURSOR = bluel
&bTluel =
)PROC
REFRESH (*)
)PNTS
FIELD(BLUE1) VAR(RED1) VAL(RED)
FIELD(ZPS00001) VAR(BLUE1) VAL(DEFAULT)
YEND

+ + + +

Defining the Processing Section

The processing section specifies additional processing that is to occur after the
panel has been displayed. It begins with the)PROC header statement and ends
with the)HELP or)END statement. The number of lines allowed in a)PROC
section depends upon the storage size available.

) PROC

A statement can be continued over as many lines as necessary as long as it is
broken at the end of a word, or a continuation symbol (+) is used within a literal.
In menus, the processing section is required and must be in a special format, as
described in L i ”

See 'Earmatting Panel Definition Statements” on page 228 for additional

information.

Defining the Reinitialization Section

The reinitialization section specifies processing that is to occur prior to redisplay of
a panel. If it is present, it follows the initialization section and precedes the
processing section.

Chapter 6. Panel Definition Statement Reference 225

)REINIT Section

YREINIT

Panel redisplay occurs in either of the following situations:

* Redisplay occurs automatically after the)PROC section has been processed if the
.MSG control variable is nonblank and the user has not requested END or
RETURN. The .MSG control variable is set automatically if a translation or
verification error occurs. It can also be set explicitly by use of an assignment
statement in the)PROC section.

* Redisplay occurs if a dialog function invokes the DISPLAY or TBDISPL service
with no panel name specified (a blank).

Note: See ISPF Services Guide under the description of the TBDISPL for a
description of how redisplay processing for the TBDISPL service differs
from that for the DISPLAY service described here.

Processing of the)INIT section is intentionally bypassed when a redisplay occurs.
Instead, the)REINIT section is processed. The automatic fetching of variables to be
displayed in the panel body is also bypassed on a redisplay. Thus, the panel is
redisplayed exactly as the user last saw it, except:

* An error message can appear on a redisplay.

* Field attribute overrides, assignment statements, or REFRESH statements can be
used, as noted in the following paragraph.

* A scrollable area can be scrolled to position the cursor or to verify failure.

Typically, a)REINIT section contains:
¢ Field attribute overrides, specified by the .ATTR control variable

* Changes to displayed panel fields, specified by assignment statements and the
REFRESH statement.

See 'Earmatting Panel Definition Statements” on page 228 for additional

information.

Eigure 67 on page 227 shows panel processing and the point at which attribute
settings can be modified for redisplay of a panel.

226 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

DISPLAY
Service With
No Panel Name

)REINIT Section
Processing

DISPLAY
Service With
Panel Name

v

)INIT Section
Processing

v

Attribute
Determination
(See Note 1)

v

Automatic
Initialization

of Fields in

the Panel Body

Data is Scrolled

Yes

Display/
Redisplay of

Panel

Automatic
Storing of
Input Variables
from the Panel
Body

AB
Selected

Yes

No

(See Note 2)

L

)REINIT Section

Scroll

Request ?

)PROC Section
Processing

(See Note 4)

)ABCINIT v Display/
Section Redisplay
Processing Pulldown
)JABCPROC Pulldown
Section Choice
Processing Selection

Msg = Yes

Blank

Notes:

1. Any attributes specified in variables in the)ATTR or)INIT sections
are determined after the)INIT section has been processed.

2. Any attributes set above this line are permanent across redisplays of
the panel. Those set below the line hold for a single redisplay only.

3. On panels created using the Dialog Tag Language (DTL), the next EXIT
and CANCEL commands also produce return code 8.

4. The Yes branch is taken if there is a scroll request, a scrollable
area is defined for the panel, and the cursor is within a scrollable area.

Figure 67. Panel Processing

END or
RETURN
Command?

MSG = Blank?

Chapter 6. Panel Definition Statement Reference

(See Note 3)

Yes

RETURN
RC =8

Yes
RETURN
RC =0

227

Panel Definition Statements

Formatting Panel Definition Statements

228

This section provides reference information for the following panel definition
statements:
* Assignment — page k2d

Note: You can use eight built-in functions in an assignment statement:
— TRUNC (truncate)
— TRANS (translate)
- PFK (function key)
— LVLINE (last visible line)
— ADDSOSI (add shift-out character)
— DELSOSI (delete shift-out character)
— ONEBYTE (convert to a one-byte code)
— TWOBYTE (convert to a two-byte code)
* ELSE - page Bad
« EXIT - page bad
+ GOTO - p% bad
e IF — page
+ PANEXIT - page b4
* REFRESH - page
e TOG - page %ﬁ
- VEDIT - pa%@
* VER - page
* VGET - page bsd
¢ VPUT - page bed

The following types of data references can appear within panel section statements:

Dialog variable
A name preceded by an ampersand (&)

Control variable
A name preceded by a period (.)

Literal value
A character string not beginning with an ampersand or period. A literal
value can be enclosed in single quotes (”'). It must be enclosed in single
quotes if it begins with a single ampersand or a period, or if it contains
any of the following special characters:

Blank < (+ |) ;- -,>: =

A literal can contain substitutable variables, consisting of a dialog variable name
preceded by an ampersand (&). The name and ampersand are replaced with the
value of the variable prior to processing the statement. Trailing blanks are removed
from the variable before the replacement. You can use a double ampersand to
specify a literal character string starting with, or containing, an ampersand.

In the description of statements and built-in functions that follows, a variable can
be either a dialog variable or a control variable. A value can be either type of
variable or a literal value.

The Assignment Statement

Assignment statements can be used in the)INIT section to set the contents of
dialog variables prior to the automatic initialization of variables in the panel body.
Also, they can be used in the)REINIT section prior to redisplay of the panel body.
Assignment statements can also be used in the)PROC section, typically to set the

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Assignment Statement

contents of dialog variables that do not correspond to fields in the panel body.

variable = value

where:

value
Specifies the contents of the dialog variable.

Example:

&A =

&COUNT = 5

&SN = '''SYS1.MACLIB'"'
&BB = &C

The first example sets variable A to blanks. The second example sets variable
COUNT to a literal character string (the number 5). The third example sets variable
DSN to a character string that begins and ends with a single quote. See

Panel Definition Statement Guidd for information on syntax rules and restrictions.

The fourth example sets variable BB to the contents of another variable, C

The literal "’ represents a single blank. To define a null, you must use the &Z
literal.

The TRUNC Built-In Function

The TRUNC built-in function can occur on the right side of an assignment
statement to cause truncation.

variable = TRUNC (variable,value)

where:

variable
(Inside the parentheses). Specifies the variable to be truncated.

value
A numeric quantity indicating the length of the truncated result or any special
character indicating truncation at the first occurrence of that character.

Examples:

&A = TRUNC (&XYZ,3)
&INTEG = TRUNC (&NUMB,'.")

In the first example, the contents of variable XYZ are truncated to a length of 3
characters and stored in variable A. Variable XYZ remains unchanged. In the
second example, the contents of variable NUMB are truncated at the first
occurrence of a period and stored in variable INTEG. Variable NUMB remains
unchanged. If NUMB contains 3.2.4, INTEG contains 3.

The control variable . TRAIL contains the remainder following a TRUNC operation.
When the contents of a variable are truncated to a specified length, all remaining
characters are stored in .TRAIL. If the contents of a variable are truncated at the
first occurrence of a special character, the remaining characters following the special
character are stored in .TRAIL. The special character is not stored, nor is it retained
in the assignment variable’s value. For example:

Chapter 6. Panel Definition Statement Reference 229

Assighment Statement

230

)PROC
&AAA = TRUNC (&zCMD, '.')
&BBB = .TRAIL

If variable ZCMD contains 9.4.6, variable AAA contains 9. The .TRAIL control
variable and variable BBB contain 4.6. The value of ZCMD remains as 9.4.6.

Because the control variable .TRAIL is set to blanks before the truncation function
is performed, it should not be specified as the truncation variable in the TRUNC
statement. For example: &ERROR = TRUNC(.TRAIL,1) would always result in
&ERROR being set to blank.

For the TRUNC built-in function, the source and destination variables can be the
same. [Figure 68 on page 234 shows an example in which it is assumed that variable
TYPECHG was originally set (in the dialog function) to a single character N, U, or D.
In the)INIT section, TYPECHG is translated to NEW, UPDATE, or DELETE and stored
into itself prior to display of the panel. In the)PROC section, TYPCHG is truncated
back to a single character.

Use of this technique allows you to change the valid options for TYPECHG by
simply typeing over the first character.

The TRUNC and TRANS built-in functions can be nested. For example:

&XYZ = TRUNC(TRANS(&A ---),1)
&ZSEL = TRANS(TRUNC(&ZCMD,'.') ---)

In the first example, the current value of variable A is translated. The translated
value is then truncated to a length of one, and the result is stored in variable XYZ.
In the second example, the contents of variable ZCMD are truncated at the first
period, the truncated value is then translated, and the result is stored in variable
ZSEL.

The TRANS Built-In Function
The TRANS built-in function can occur on the right side of an assignment
statement to cause translation.

variable = TRANS (variable value,value[MSG=value])

where:

variable
(Inside the parentheses). Specifies the variable to be translated.

value,value
Paired values. The maximum number of paired values allowed is 126. The first
value in each pair indicates a possible value of the variable, and the second
indicates the translated result.

Example:
&REPL = TRANS (&MOD Y,YES N,NO)

The current value of variable MOD is translated, and the result is stored in
variable REPL. Variable MOD remains unchanged. The translation is as
follows: if the current value of MOD is Y, it is translated to YES. If the current
value is N, it is translated to NO. If the current value is anything else (neither Y
nor N), it is translated to blank.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Assignment Statement

The anything-else condition can be specified by using an asterisk in the last set
of paired values. For example:

&REPL = TRANS (&MOD ... =*,'?")
&REPL = TRANS (&MOD ... *,*)

In the first example, if the current value of MOD does not match any of the
listed values, a question mark is stored in variable REPL. In the second
example, if the current value of MOD does not match any of the listed values,
the value of MOD is stored untranslated into REPL.

MSG=value
A message ID. Another option for the anything-else condition is to cause a
message to be displayed to the user Typically, this technique is used in the
processing section of the panel definition.

Example:
&DISP = TRANS (& 1,SHR 2,NEW 3,MOD MSG=PQRS001)

The contents of variable D are translated as follows: 1 is translated to SHR, 2 is
translated to NEW, and 3 is translated to MOD. If none of the listed values is
encountered, message PQRS001 is displayed. Message PQRS001 can be an error
message indicating that the user has entered an invalid option.

For the TRANS built-in function, the source and destination variables can be the
same. [Figure 68 an page 237 shows an example in which it is assumed that variable
TYPECHG was originally set (in the dialog function) to a single character N, U, or D.
In the)INIT section, TYPECHG is translated to NEW, UPDATE, or DELETE and stored
into itself prior to display of the panel. In the)PROC section, TYPCHG is truncated
back to a single character.

Use of this technique allows you to change the valid options for TYPECHG by
simply typing over the first character.

The TRANS and TRUNC built-in functions can be nested. For example:

&XYZ = TRUNC(TRANS(&A ---),1)
&ZSEL = TRANS(TRUNC(&ZCMD,'.') ---)

In the first example, the current value of variable A is translated. The translated
value is then truncated to a length of one, and the result is stored in variable XYZ.
In the second example, the contents of variable ZCMD are truncated at the first
period, the truncated value is then translated, and the result is stored in variable
ZSEL.

Chapter 6. Panel Definition Statement Reference 231

Assighment Statement

232

%COMMAND===>_ZCMD P

+

%EMPLOYEE SERIAL: &EMPSER
TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST %===>_LNAME +
FIRST %===>_FNAME +
INITIAL%===>_1+
HOME ADDRESS:
LINE 1 %===>_ ADDR1
LINE 2 =>_ADDR2
LINE 3 > ADDR3
LINE 4 >_ADDR4

+ + + +

N F oF

HOME PHONE:
AREA CODE %
LOCAL NUMBER%

===> PHA+
===> PHNUM +

— + 4+ + 4+ + 4+ ++ o+

Init
&TYPECHG

Trans (&TYPECHG N,NEW U,UPDATE D,DELETE)

)Proc
&TYPECHG = Trunc (&TYPECHG,1)

)End
N

Figure 68. Sample Panel Definition with TRANS and TRUNC

The PFK Built-In Function
The PFK built-in function provides function key assignment information by
command or key number.

variable = PFK(value)

where:

value
Either a command or a key number.

Example:
&X = PFK (HELP)
&Y = PFK (2)

In the first example, the first function key that is assigned to the HELP command
is returned in variable X as a character string PFnn, where nn is the function key
number. If CUA mode is set, or the panel has an active keylist, the character string
is Fnn, where nn is the function key number. If the HELP command is not assigned
to a function key, a blank value is returned.

In scanning the current function key definitions, the primary keys are scanned first,
then the secondary keys. If KEYLIST OFF has been issued, ISPF searches the ZPF
variables. On a 24-key terminal, for example, if both function keys 13 and 1 are
assigned to HELP, the function returns F13.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Assignment Statement

In the second example, the command assigned to F2 is returned in variable Y. If no
command is assigned to the key requested, a blank value is returned.

The LVLINE Built-In Function

The LVLINE built-in function (used on an assignment statement in the)INIT,
)REINIT, or)PROC section) provides the line number of the last visible line within
a graphic or dynamic area of the currently displayed panel.

variable = LVLINE(value)

where:

value
Name of the GRAPHIC or DYNAMIC area. In split-screen mode, this value
could be less than the number of lines defined in the area.

This built-in function provides the line number of the last line within a graphic or
dynamic area that is visible to the user on the currently displayed panel. The value
parameter is the name of the graphic or dynamic area. In split-screen mode, this
value could be less than the number of lines defined in the area. If the area is
defined within a scrollable area, the number returned is the last visible line when
the user submitted the panel, even if the user could have scrolled to see more.

Note: When coding the command line after the dynamic area on a non-TBDISPL
panel, ISPF might not be able to calculate the LVLINE value correcty based
on the location of the command line following the dynamic area, the
number of lines after the dynamic area, the function key settings, SPLIT or
SPLITV command processing, or other ISPF commands that affect the screen
size displayed. To achieve the correct LVLINE value with the command line
displayed at the bottom of the ISPF dynamic area panel, the command line
will have to be coded above the dynamic area on the panel, ZPLACE set to
BOTTOM, and CUA mode set to YES.

Example:
&L1 = LVLINE(AREA1)

The ADDSOSI and DELSOSI Built-In Functions

These built-in functions are used to add to or delete from a value-string the
shift-out and shift-in characters that mark the start and end of a DBCS field,
without changing the value of the input string.

variable = ADDSOSI(variable name)
variable = DELSOSI(variable name|DBCS literal)
where:

variable name
Name of the variable that the function will process.

Examples:
&VAR2 = ADDSOSI (&VAR1)
&VAR2; = DELSOSI('[DBDBDBDB] ')

The bracket characters [and] represent the shift-out and shift-in characters.

Chapter 6. Panel Definition Statement Reference 233

Assighment Statement

The target variable must not contain mixed (DBCS/EBCDIC) data. Only variables,
not literals, can be specified with the ADDSOSI function. Variables or literals can
be specified with the DELSOSI function. An odd input-value length is not
permitted for either function. The input-value length does not include trailing
blanks or nulls. Nested built-in functions are not allowed on the DELSOSI
function. The ADDSOSI function allows nesting of the TWOBYTE built-in function,
described below.

Example:
&VARB = ADDSOSI(TWOBYTE(&VARA))

Variable VARA is converted to a 2-byte character code and shift-out and shift-in
characters are added to the character string. Then, variable VARB is set to the
resulting value.

The ONEBYTE and TWOBYTE Built-In Functions

The ONEBYTE function is used to convert a variable from a two-byte character
code to the corresponding one-byte code without changing the value of the
variable. The TWOBYTE function is used to convert a variable from a one-byte
character code to the corresponding two-byte code without changing the value of
the variable.

variable = ONEBYTE(variable name)
variable = TWOBYTE (variable name)
where:

variable name
Name of the variable the function will process.

Examples:

&VARA = ONEBYTE(&VARB)
&VARA = TWOBYTE (&VARB)

The variable being converted must not contain mixed (DBCS/EBCDIC) data. Only
variables, not literals, can be converted. An odd input value length is permitted for
the TWOBYTE function, but is not permitted for the ONEBYTE function. The input
value length does not include trailing blanks or nulls. Literals cannot be used as
input parameters for either function. Nested built-in functions are not allowed on
the TWOBYTE function. The ONEBYTE function allows nesting of the DELSOSI
built-in function.

Example:
&VARB = ONEBYTE(DELSOSI (&VARA))

The ELSE Statement

The ELSE statement specifies that alternate processing is to take place when the
conditions of the matching IF statement are not satisfied.

ELSE

The ELSE statement has no parameters. The ELSE statement must be
column-aligned with the matching IF statement. Only one ELSE statement is
allowed on the same line, even though each can align with a prior IF statement.

234 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

ELSE Statement

You can nest IF statements within ELSE statements. The only limitation on the
number of nested IF statements is the maximum number of columns available for
indented statements due to the panel record length.

The ELSE statement is indentation sensitive. If the conditional expression is true,
the ELSE statement that is column-aligned with the IF plus all statements to the
right of that column are skipped. Processing continues with the next statement that
begins in the same column as the ELSE or in a column to the left of the ELSE.

An example of using the ELSE statement:

IF (&DOW = UP)
&ACTION = SELL
ELSE
IF (&DOW = DOWN)
&ACTION = BUY
ELSE
&ACTION = HOLD
&DOW = &BEAR

In this example, if the value of &DOW is UP, variable &ACTION is set to SELL
and processing continues at the statement &DOW = &BEAR The indented
processing statements following the first ELSE statement execute if variable &DOW
does not have a value of UP. The assignment statement, &ACTION = HOLD,
executes only if the value of &DOW is not UP or DOWN.

shows a sample panel definition with an IF/ELSE statement
pair. The current value of variable PHA is tested for the local area code, 919. If the
value of PHA is 919, variable RATE is set to the value of variable &LOCAL If the
value of PHA is not 919, variable RATE is set to the value of variable &LONGD

Chapter 6. Panel Definition Statement Reference 235

EXIT and GOTO Statements

236

%COMMAND===>_ZCMD P

+

%EMPLOYEE SERIAL: &EMPSER
TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST %===>_LNAME +
FIRST %===>_FNAME +
INITIAL%===>_1+

HOME ADDRESS:
LINE 1 %
LINE 2 %
LINE 3 %
LINE 4 %

o

> ADDRI
> ADDR2
> ADDR3
> ADDR4

+ 4+ + o+

HOME PHONE:
AREA CODE %
LOCAL NUMBER%

===> PHA+
===> PHNUM +

— 4+ + + A+t + o+

INIT
&TYPECHG

TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,1)
IF (&PHA = '919')
&RATE = &LOCAL
ELSE
&RATE = &LONGD

)END

Figure 69. Sample Panel Definition with IF and ELSE Statement

EXIT and GOTO Statements

Nested IF/ELSE statements can easily become complex, especially since the IF
statement is indentation sensitive. The GOTO and EXIT statements allow you to
avoid these complexities and achieve enhanced performance during panel
processing. You can transfer control back to the user as soon as processing errors
are detected.

The GOTO and the EXIT statements are both allowed in the)INIT,)REINIT,
)PROC,)ABCINIT, and JABCPROC sections of the panel source definitions.

EXIT Statement

EXIT

The EXIT statement has no parameters. When an EXIT statement is encountered
during panel processing, ISPF halts processing of the section in which the
statement was found and bypasses all remaining statements in that section. Further
processing of the panel continues normally.

e Example 1: Simple GOTO/EXIT

)PROC
IF (&CUSTNAME = ' ')
GOTO NAMERR
IF (&CUSTNUM = ' ')
.MSG=XXXXX /* message indicating number is required =*/

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

EXIT and GOTO Statements

EXIT /* exit)PROC section */
VER (&CUSTNAME,ALPHA,msg=xxxxx) /* messages specific to x/
VER (&CUSTNUM,NUM,msg=xxxxx) /* data type - alpha or num */
GOTO NXTSECT
NAMERR:
.MSP=XXXXX /* message indicating name must be entered =/
EXIT /* exit)PROC section */
NXTSECT:

zero, one, or more statements

In this example, the VER statements are skipped if no values are entered for the
CUSTNAME or CUSTNUM variable fields. Processing for the)PROC is halted
after the .msg variable is set.

* Example 2: Multiple GOTOs

YINIT
&var2 =
IF (&newcust = ' ')
GOTO BYPASS

IF (&newcust = 'renew')
&var2 = 1
GOTO NXTCHK1

IF (&newcust = 'initial')

&var2 = 2
GOTO NXTCHK1

ELSE
GOTO BYPASS

NXTCHK1:

IF (&var2 = 1)
&var3 =1
&vard = 0
GOTO NXTSECT

ELSE
&vard =1
&var3 = 0
GOTO NXTSECT

BYPASS:

&var3 = 0
&vard = 0
NXTSECT:

zero, one, or more statements

Assuming that the variable NEWCUST was entered and verified to contain one
of the two values on a previous panel display, this example illustrates that
certain fields on the panel currently being processed will or will not be set
depending on the value of NEWCUST.

e Example 3: GOTO Label within IF/ELSE

)INIT
IF (&varl = ' ")
GOTO BYPASS
IF (&var2 = 1)

&vars =1

&vare = 0

BYPASS:

&var7 =1
ELSE

zero, one, or more statements
If variable varl is blank, control is transferred to the label BYPASS. Variables var5

and var6 are not set and processing will continue as if the IF statement were
TRUE. Variable var7 will be set to 1. The ELSE branch is not executed.

Chapter 6. Panel Definition Statement Reference 237

EXIT and GOTO Statements

238

GOTO Statement

GOTO label

where:

label
Literal value of the label to which you will branch. The label:
* Must be from 1 to 8 characters in length
* Must begin with an alphabetic character (A-Z, a—z)
* May contain any other alphameric character (A-Z, a-z, 0-9).

The literal value of the label used must be followed by a colon when it appears
by itself as a label. For example:
label:

ISPF translates the value for the label to uppercase before it is processed.

There are no indentation restrictions on a GOTO and its corresponding label.
They may be at different indentation levels.

ISPF processes the GOTO statement as follows:
e ISPF assumes that transfer of control to the named label is downward.

 ISPF continues processing with the next sequential statement after the first
occurrence of the named label.

* ISPF ignores duplicate labels.

* ISPF may transfer control within the IF or ELSE branch of an IF/ELSE
statement. If the label is within the IF branch, processing continues with the next
statement following the label as if the IF were true. If the label is within the
ELSE branch, processing continues with the next statement following the label as
if the IF were false.

ISPF issues a severe error message if it does not find a matching label below the
GOTO statement and within the same section in which the GOTO statement is
coded. The label need not be on a line by itself.

The IF Statement

The IF statement is a valuable tool used to verify a conditional expression. The
conditional expression can be as basic as testing the value of a variable or can be
expanded to use VER statement constructs and Boolean capabilities. This section
first defines the complete syntax of the IF statement. More detailed sections follow
to describe:

* Basic IF value testing

¢ IF statement with VER constructs

¢ IF statement with Boolean operators

IF statements are valid in the)INIT,)REINIT,)PROC, JABCINIT, and) ABCPROC
panel sections.

IF (conditional-expression [boolean-operator conditional-expression]..)

[ELSE]

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

IF Statement

where:

conditional-expression
Is either:

Basic value test expression:
variable operator value[,value...]

VER statement construct coded without the MSG= parameter:
VER (variable [, NONBLANK], keyword [, valuel, value2,...])

Boolean-operator
The character symbol & or characters AND (AND Boolean operator) or the
character symbol | or characters OR (OR Boolean operator).

ELSE
The optional statement that specifies alternate processing if the IF condition is
not satisfied.

Basic IF Value Testing

IF (variable operator value [,value ...])

[ELSE]

The parentheses in the syntax contain a conditional expression, in which the
operator is expressed in either uppercase character symbols, such as EQ, or in
special symbols, such as =. These symbols can be any of:

=or EQ (equal to)

= or NE (not equal)

>or GT (greater than)

<or LT (less than)

>= or GE (greater than or equal)
<=or LE (less than or equal)

-> or NG (not greater than)

-< or NL (not less than).

You can specify comparison against up to 255 values for the EQ (=) and NE (-=)
operators. For the remaining operators, you can specify comparison against only
one value.

If you use a character symbol operator, it must be separated from the variable
name and comparison value by one or more blanks. For example:

IF (&ABC EQ 365)

Separation of a special symbol operator from the variable name and comparison
value is optional.

IF (&ABC = 365) 1is the same as IF (&ABC=365)

A compound symbol operator, such as <= or NG, must not contain intervening
blanks. For example:

<= cannot be < =

Chapter 6. Panel Definition Statement Reference 239

IF Statement

In determining whether the criteria of a conditional expression are met, ISPF uses a
numeric compare if the value of the variable and the value being compared are
whole numbers between —2147483648 and +2147483647. Thus, if &A is set to +1,
the expression IF (&A=1) is evaluated as being true, using the numeric compare. If
the value of the variable and the value being compared are not whole numbers
between —2147483648 and +2147483647, ISPF uses a character compare, using the
EBCDIC collating sequence to evaluate the IF expression. For both numeric and
character compares, trailing blanks are ignored.

Examples of basic value testing:
e IF (&DSN = ") — True if variable DSN is null or contains blanks.

e IF (&OPT EQ 1,2,5) — True if variable OPT contains any of the literal values 1,
2, or 5.

* IF (&A GE &B) — True if the value of variable A is greater than or equal to the
value of variable B.

* IF (&A == AAA,BBB) — True if variable A is not equal to AAA and not equal to
BBB.

The IF statement is indentation sensitive. If the conditional expression is true, then
processing continues with the next statement. Otherwise, all following statements
are skipped up to a column-aligned ELSE statement, if one exists, or up to the next
statement that begins in the same column as the IF or in a column to the left of the
IF. Example:
IF (8XYZ = ')

&A = &B

&B = &PQR

IF (& = YES)

&C = NO

& = &7Z77
In this example, processing skips to statement &D = &ZZZ from either IF
statement if the stated condition is false.

Note that the scope of the IF statement is not terminated by a blank line.

IF Statement with VER Constructs

The conditional expression on the IF statement now includes VER statement
constructs with one exception: the MSG= parameter is not allowed. The IF
conditional-expression evaluates to TRUE (1) for successful verifications and to
FALSE (0) for failing verifications. See ['The VER Statement” on page 252 for
complete explanation of the VER statement. An example of using VER statements
with IF statements:

IF (VER (valid keyword parameters and values))

ELSE
.MSG = nl1d122
IF (VER (valid keyword parameters and values))

The VER statement can be split over more than one line, but the VER statement
and the left parenthesis of its keyword parameters must be on the same line. The
following example is invalid:

240 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

IF Statement

IF (VER
(valid keyword parameters and values))

IF Statement and Boolean Operators

You can combine two or more conditional expressions on the IF statement. ISPF
evaluates the conditional expressions on the IF statement from left to right, starting
with the first expression and proceeding to the next and subsequent expressions on
the IF statement until processing is complete.

The use of the AND Boolean operator takes precedence over the OR Boolean
operator as shown in the following examples.

The number of conditional expressions you can specify on the IF statement is
limited to 255.

The accepted symbols for the Boolean operators are:

* & or AND (AND Boolean operator)
AND processing returns a TRUE result for the IF statement only if all the
conditional expressions evaluate as TRUE.

* | or OR (OR Boolean operator)
OR processing returns a TRUE result for the IF statement if any of the

conditional expressions evaluate as TRUE. Also, for an IF statement to be
evaluated as FALSE, all conditional expressions must be evaluated as FALSE.

The Boolean operators must be separated by a preceding and following blank or
blanks.

Examples of Boolean operators in the IF statement:

* Example 1: Comparison of two expressions using different Boolean operators in
two separate IF statements.
IF (VER (&vara,NB,ALPHA) & VER (&varb,NB,ALPHA))

ELSE
IF (&varc = 123 OR VER (&vard,NB,NUM))

The first IF statement will be successful only if both VER expressions are
satisfied, while the IF statement under the ELSE will be successful if either of
the expressions on the IF statement are satisfied.

* Example 2: Comparison of three expressions using the AND Boolean operator in
the same IF statement, with additional OR Boolean operators.

IF (VER (&vara,NB,ALPHA) & VER (&varb,NB,ALPHA) &
_&varc = abc,xyz | &vard = 123 | &vard = 456)

ELSE
.msg = n1d123

The IF statement will be successful if the comparisons of the first three
expressions evaluate to TRUE, or if expressions four or five evaluate to TRUE.

* Example 3: Comparison of two pairs of expressions using the AND Boolean
operator combined on the same IF statement by the OR Boolean operator.

Chapter 6. Panel Definition Statement Reference 241

IF Statement

IF (VER (&vara,NB,ALPHA) AND &varb
VER (&vara,NB,ALPHA) AND &varb

abc OR
Xyz)

ELSE
.msg = nld124
.attr (vara)
.attr (varb)

'color(yellow)'
‘color(yellow)'

Either of the pairs of expressions must evaluate to TRUE to achieve a successful
IF statement.

¢ Example 4: Comparison of three expressions showing that the AND operator has
precedence.

IF (Expression-1 OR Expression-2 AND Expression-3)

ELSE
.msg = n1d125

Because the IF statement AND Boolean operator has precedence over the IF
statement OR Boolean operator, the specifying an IF statement similar to the one
above might not give you the results you expected.

If you expected the previous statement to be evaluated like this:
IF ((expressionl OR expression2) AND expression3)

You would need to write either two separate IF statements:

IF (Expression-1 OR Expression-2)
IF (Expression-3)

Else
.msg = n1d126

Or two separate comparison pairs:

IF (Expression-1 AND Expression-3 OR
Expression-2 AND Expression-3)

Else
.msg = n1d127

The PANEXIT Statement

The ISPF panel user exit provides a way for you to extend the panel language
processing of dialog variables. This processing can include operations such as
verification, transformation, translation, and formatting of dialog variables passed
to the panel user exit routine. Performing these operations in a panel user exit
routine reduces the logic required in the ISPF function programs.

Use the PANEXIT statement in a panel’s)INIT,)REINIT, or)PROC section to
invoke the panel user exit. This statement causes ISPF to branch to the panel user
exit routine. When the routine processing completes, control returns to the next
sequential panel language statement.

242 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

PANEXIT Statement

PANEXIT ((value,value,...),{PGM,exit-add
[,exit-data]
[,MSG=msgid]
LOAD,exit-mod
[,exit-data]
[,MSG=msgid]
REXX, rexx-name
[,exit-data]l
[,MSG=msgid]})

where:

value
Specifies the names of dialog variables being passed to the exit. The string of
values, including the parenthesis, cannot exceed 255 characters. The string of
values can be represented by the name of a dialog variable that contains a list
of names of variables being passed to the exit routine.

PGM
Keyword that indicates that the exit routine being invoked was loaded when
ISPF loaded the application dialog or was loaded from the application. The
application passes ISPF the address of the exit routine in exit-add.

exit-add
This is the name of a 4-byte, FIXED format dialog variable that contains the
address of the exit routine, which can reside above or below the 16Mb line.
The exit routine receives control in AMODE=31 mode. This parameter is used
in conjunction with the keyword PGM.

exit-data
This is the name of a 4-byte FIXED format dialog variable that contains a
value, such as the address of an information area, to be passed to the exit
routine.

msgid
If no message identification is returned to ISPF from the exit routine, this
parameter identifies the message to be displayed if a variable fails the exit
routine evaluation. If this parameter is not specified, and no message
identification is returned from the exit routine, ISPF issues a generic message
indicating that the exit routine evaluation failed.

LOAD
Keyword that indicates that the exit routine is to be loaded dynamically. The
application passes ISPF the module name of the exit routine that is to be
dynamically loaded. The module name is passed in the exit-mod parm.

exit-mod
This parameter identifies the name of the panel user exit routine module that
is to be dynamically loaded by ISPF. The panel user exit name can be passed
as a literal or as a dialog variable that contains the panel user exit name. This
parameter is used in conjunction with the LOAD keyword.

REXX
Keyword that indicates the name of the Rexx panel exit that is to be loaded
and run. The exit can be an interpreted Rexx exec or an exec that was
compiled into load module form. Standard search sequences are used to load
the Rexx program.

rexx-name
This parameter is the name of the Rexx program that is to be used as the panel

Chapter 6. Panel Definition Statement Reference 243

PANEXIT Statement

244

exit. The exit can be an interpreted Rexx exec or an exec that was compiled
into load module form. If it is interpreted and might conflict with an existing
load module name, the name can be preceded with a percent sign (%) to avoid
using the load module.

On the PANEXIT statement you can specify that the following be passed to the
panel user exit routine:

A list of dialog variables to be processed by the exit routine in one call. Rules
that apply to the variables being passed are:

— Variable values must be in character format when passed, and must remain in
character format.

— The exit routine can change a variable’s value but it cannot change its length.
Thus, if a dialog uses the VDEFINE service to define any of these variables to
be passed, it should specify the NOBSCAN option. Otherwise, the variable
value’s length is considered to be the length of the actual data with blanks
being ignored.

For implicitly defined variables, the variable length is considered to be the
same as the length of its value.

A 4-byte area that you can use to pass the address of data to be used by the exit
routine.

The identification of a message to be issued if a variable fails the exit routine
evaluation. ISPF uses this value to set the .MSG control variable or, in the case of
a panel user exit severe error (RC=20 or invalid value), to set ZERRMSG.

Notes:

1.

w

A panel user exit routine cannot access any dialog variables except those
passed on the call.

A panel user exit routine cannot issue requests for any ISPF services.
ISPF ignores any PANEXIT statement issued from dialog test option 7.2.

The PANEXIT statement cannot be issued from a selection panel that initiates a
dialog prior to defining the exit address.

The panel exit can not be written in LE member languages (languages which
require the LE runtime environment). Exits that require the existence of an LE
environment are not supported.

Following a successful validation exit, during which one or more dialog variable
values are changed, ISPF updates the values for all dialog variable names included
on the PANEXIT statement. This allows the exit routine to define dialog variables
for cursor field or cursor position, and to return these values to ISPF when an
error has been detected.

How to LOAD the Panel User Exit Routine
If the dialog function routine and the panel user exit routine are separate object
modules, you can load the panel user exit routine by either:

Linking the exit routine object module to the dialog function object module
containing the display request for the panel from which the PANEXIT statement
is issued. Thus, when ISPF loads the application, it also loads the exit routine.

Loading the exit routine from the application and passing to ISPF the address of
the exit routine.

* Letting ISPF load the exit routine dynamically.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

PANEXIT Statement
How to LOAD a REXX Panel Exit

REXX panel exits can interpreted Rexx programs or compiled Rexx programs
(CREXX or load modules). ISPF automatically loads the Rexx program by using
standard system interfaces. For non-load module programs, ISPF calls TSO to
pre-process the program. The program remains loaded for as long as the current
screen is active. If you change your Rexx program and want to run the new copy,
you must end any split screens that used the previous copy.

REXX exits receive only one parameter — a hexadecimal representation of the
address of the list of addresses shown in w You can use the Rexx storage()
function to view and modify the parameters that are pointed to by that list, or you

can use the ISPF function named ISPREXPX, described in Using ISPREXPX. td

”

Invoking the Panel User Exit Routine
A dialog invokes the panel user exit by issuing the PANEXIT statement from a

panel’s)PROC,)INIT, or)REINIT section. If the LOAD keyword is specified, ISPF
will issue an OS load to bring the load module into virtual storage. ISPF then
invokes the exit routine through a call (BALR 14,15). You must use standard OS
linkage conventions when invoking the panel user exit. The exit routine (called in
AMODE 31) must support 31-bit addressing.

Panel exits cannot be written in languages that use the Language Environment
(LE) run time environment.

ISPF uses the standard parameter list format to pass parameters. Register one
points to a list of addresses; each address points to a different parameter as shown

in Fi . See I'Parameters Passed from ISPF to the Panel ser Exit Routine” onl
for information on these parameters.

reg 1 —| addr 1 |—> Exit Data
addr 2 —> Panel Name
addr 3 [Panel Section
addr 4 |—> Message ID
addr 5 |—> Number of Variables
addr 6 —> Array of Variable Names
addr 7 > Array of Variable Lengths
addr 8 |— String of Variable Values

Figure 70. Standard Parameter List Format

The keyword, LOAD, on the PANEXIT panel statement, provides the option of
dynamically loading a panel user exit routine. PGM and LOAD are the only valid
keywords. PGM indicates that a panel user exit using a compiled source is being
invoked. LOAD indicates that the panel user exit routine named by the exit-mod
parameter is to be dynamically loaded by ISPE.

Chapter 6. Panel Definition Statement Reference 245

PANEXIT Statement

246

ISPF checks the keyword to determine if the panel user exit routine is to be
dynamically loaded. If it is, ISPF issues an OS load to bring the load module into
virtual storage. The search sequence for link libraries is: job pack area, ISPLLIB,
steplib, link pack area, linklib. See ISPF Services Guide for further discussion of the
search order using LIBDEF.

The panel user exit routine is loaded only once per SELECT level the first time the
panel is displayed. The loaded panel user exit routine is not deleted until the
SELECT, which first displayed the panel, is terminated.

Parameters Passed from ISPF to the Panel User Exit Routine
Parameters passed to the panel user exit routine are (in the order passed):

1. Exit Data
The value of the dialog variable identified on the PANEXIT statement to
contain exit data. Its format is a fullword fixed value. If no exit data area is
provided, ISPF passes binary zeros.

2. Panel Name
The name of the panel from which the panel user exit is being invoked. Its
format is CHAR(8), left-justified in the field. ISPF ignores any changes made to
this parameter by the exit routine.

3. Panel Section
A one-character code that identifies the panel section from which the panel
user exit is being invoked. Its format is CHAR(1). Its value is:
I for the)INIT section
R for the)REINIT section
P for the)PROC section.

4. Message ID
The identification of the message used to set the .MSG value if the variable
evaluation fails. In case of a severe error in the exit routine processing, ISPF
uses this value to set variable ZERRMSG. Its format is CHAR(8). When the exit
routine is invoked, it contains eight blanks (X"40’). On return to ISPF if the
value in Message ID is not blank, ISPF assumes the value to be a message 1D,
which must be left-justified in the field.

5. Number of Variables
The dimension of the array of variable names and the array of variable lengths
passed to the panel user exit routine. Its format is a fullword fixed value. ISPF
ignores any changes made to this parameter by the exit routine.

6. Array of Variable Names
An array of dialog variable names being passed to the panel user exit routine.
Each array entry has a format of CHAR(8), left-justified in the array. ISPF
ignores any changes made to this parameter by the exit routine.

7. Array of Variable Lengths
An array of dialog variable lengths being passed to the panel user exit routine.
Each array entry format is a fullword fixed value. If the exit routine changes
any of the variable length values, a severe error results.

8. String of Variable Values
A character buffer of dialog variable values mapped by the array of variable
lengths and the array of variable names. The length of the buffer is the sum of
the lengths in the array of variable lengths. The exit routine returns updated
dialog variable values to ISPF in this buffer.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

PANEXIT Statement

Return Codes and Error Processing
Return codes, set in the panel user exit routine, recognized by ISPF are:

0 Successful operation.

8 Exit-defined failure. ISPF sets the .MSG control variable and displays or
redisplays the panel with the message.

20 (or code unrecognized by ISPF)
Severe error in the exit routine.

For an exit routine return code of 8, ISPF sets the .MSG control variable by using
the following search order:

1. If the value in the Message ID parameter is not blank on return to ISPF, that
value is used for setting the .MSG control variable.

2. 1If the value in the Message ID parameter is blank on return, the value (if any)
specified for the MSG= keyword on the PANEXIT statement is used for setting
the .MSG control variable.

3. If neither the Message ID parameter nor the MSG= keyword has been given a
value, the default ISPF exit error message is used for setting the .MSG control
variable.

The panel section in which the .MSG control variable is set affects the message

display as follows:

*)INIT or)REINIT section — The message is displayed on the panel.

¢)PROC section — The panel, including the message to be displayed, is
redisplayed.

If the return code from the exit routine is either 20 or not one of the recognized
codes, the display service terminates with a severe error condition. ISPF sets the
ZERRMSG system variable by using the following search order:

1. If the value in the Message ID parameter is not blank on return to ISPF, it is
used for setting the ZERRMSG system variable. This allows the exit routine to
define the message to be used in case of a severe error.

2. If the value in the Message ID parameter is blank on return, the value (if any)
specified for the MSG= keyword on the PANEXIT statement is used for setting
the ZERRMSG system variable.

3. If neither the Message ID parameter nor the MSG= keyword has been given a
value, the default ISPF exit error message is used for setting ZERRMSG.

If CONTROL ERRORS CANCEL is in effect, ISPF displays on the severe error
panel the message indicated by the value of ZERRMSG.

Using ISPREXPX to Read and Modify Parameters

A Rexx panel exit receives only the storage address of the standard panel exit
parameter list. Although you can use the standard Rexx storage() function to read
and modify the list, ISPF supplies a program called ISPREXPX to set local Rexx
variables that reflect the information passed to and from the panel exit.

ISPREXPX Syntax:
Call ISPREXPX('I")

to initialize Rexx variables.
Call ISPREXPX('T')

to set ISPF variables from the Rexx variables of the same name.

Chapter 6. Panel Definition Statement Reference 247

PANEXIT Statement

248

ISPREXPX establishes several variables within the Rexx program. The stem
variable VARNAMES.n contains the names of the variables passed into the
program. ISPREXPX then creates variables of those names, called "named
variables”.

The Rexx program must insure that changes to the variables are done to the
named variables and not to the VARNAMES.n stem variable. For example, if the
PANEXIT statement on the panel passes in a variable named ZDATA, then
ISPREXPX creates a named variable called ZDATA. The Rexx program must refer
to and update that variable. If you do not know the exact name that is specified on
the PANEXIT statement in the panel that calls the Rexx exit, you can get the name
from the VARNAMES.n stem variable and use the INTERPRET instruction to get
and set the actual variable.

Because the lengths of variables cannot be changed by a panel exit, ISPREXPX("T")
insures that the length does not change by padding or truncating the variable
values (VARVALS.n) as needed.

Variable Explanation

user variables The variables as named in the PANEXIT statement. For
example, a PANEXIT statement like
PANEXIT((ZDATA,USER),REXX...) creates variables ZDATA
and USER. Changes to the variables are returned to ISPFE. If
the length changes, the new value is truncated or padded with
blanks as needed to keep the original length.

VARNAMES.0 All of these variables contain the number of

VARVALS.0 variable names passed into the panel exit.

VARLENS.0 Changes to these variables are ignored.

MSGID Message id to set in case of error. It is blank on entry to the
exit. Changes to this variable are used.

PANELNAME The name of the panel being processed. Changes to this
variable are ignored.

PANELSECTION Panel section 'T’, 'R’, or 'P’. Changes to this variable are
ignored.

EXDATA A hexadecimal representation of the address of the user data.

Changes to this variable are ignored, but the program might
change the data to which this address points.

Return Codes: The following return codes are possible:

0 Normal result. Variables were retrieved or set successfully.
16 Parameter error. Incorrect parameter passed to ISPREXPX.
20 Error. Another error occurred. Most likely there is a failing return code

from a Rexx service called by ISPREXPX.

Example: This sample exit changes the case of all data in the variable ZDATA. It
also overlays the beginning of the variable ZDATA with the string "**REXX**’. The
name ZDATA is used on the PANEXIT statement in the panel source and is
assigned to the variable name VARNAMES.1.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

PANEXIT Statement

/* REXX panel exit: panexit((zdata),REXX,sample) =/

call ISPREXPX 'i'

zdata=overlay('02'x'#* REXX **''0l1'x,translate(zdata, ,
'abcdefghijkImnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ', ,
'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklImnopgrstuvwxyz'))

call ISPREXPX 't'

Note: You can see how this panel works by saving this example in a REXX library
using the name SAMPLE and changing the Browse panel ISRBROBA to
include the following line in the)INIT and)REINIT sections:

panexit((zdata),REXX,sample)

The REFRESH Statement

The REFRESH statement provides a means to force specified fields in the panel
body to be retrieved prior to a redisplay.

REFRESH (value, value, ...)

where:

value
Name of an input or output field in the panel body.

Typically, when a panel is redisplayed, the automatic fetching of variables that
appear in the panel body is bypassed. As a result, all variables are normally
displayed as the user last saw them, even though the variable contents can have
been changed. REFRESH causes the contents of specified fields to be retrieved and
allows the user to see any changes that have occurred since the panel was last
displayed.

The REFRESH statement can appear within the)PROC or)REINIT section of a
panel definition. ISPF flags it as an error if it appears in the)INIT section. When
this statement is encountered, the specified input/output fields within the panel
body are retrieved from the corresponding dialog variables prior to redisplay of
the panel.

A value of * indicates that all input/output fields on the panel are retrieved. You
can omit the parentheses if only one field is refreshed.
* Example 1:

)PROC

IF (.MSG == ')

&STMT = 'Correct invalid field and press Enter key'.
IF (.MSG ="' ")

&STMT = ' !
REFRESH STMT

If the panel is displayed again and if the control variable .MSG is set to
non-blank in the)PROC section, the panel field STMT is reset to Correct the
... Enter key. Otherwise, the field is set to blank.

¢ Example 2:

YREINIT
REFRESH(SEL, RENAME)

Chapter 6. Panel Definition Statement Reference 249

REFRESH Statement

250

Both panel fields SEL and RENAME are reset with their current values prior to
any redisplay.
* Example 3:

YREINIT
REFRESH (%)

All of the panel fields are reset to their current values.
* Example 4:

YREINIT
REFRESH (&RVARS)

The variable RVARS will contain a list of one or more panel fields to be
refreshed.

A field that is refreshed on the screen remains unchanged for multiple redisplays
unless it is again refreshed.

The TOG Statement

Use the TOG statement to alternate the value of a variable between two values.

TOG (mode, fld,&variable[,valuel,value?])

where:

mode
Mode in which TOG is to function:
¢ S—single, used for pull-downs and single-choice selection fields.
* M—multiple, used for multiple choice selection fields.

fld
Panel field used to determine whether &variable alternates.

&variable
Variable whose value may alternate between valuel and value2.

valuel
Value &variable receives if &variable is not equal to valuel. The default is 0.
Valuel can be a dialog variable or literal.

value2
Value &variable receives if &variable is equal to valuel. The default is 1.
Value2 can be a dialog variable or literal.

Examples:

Valuel = 0
Value2 = 1

IF &variable
&variable

ELSE
&variable

Value2
Valuel

Value2

The statement accepts numeric or alphabetic values. A numeric compare is
performed on numeric data. When scan encounters a comma (even if it is followed
immediately by an another comma or a right parenthesis) it assumes a value is
given. The TOG value will be assigned a blank in this case. For example:

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

TOG Statement

TOG(S,f1d1l,test,) valuel = ' ' value2 =1
TOG(S,f1d1,test,,) valuel = ' ' value2 = ' '
TOG(S,f1d1,test) valuel = 0 value2 = 1 (both will use defaults)

If the TOG is in single mode, a check is made to determine if the data has been
modified. If it has been modified, then the TOG is performed.

If the TOG is in multiple mode, and a check determines that the data has been
modified, then:

e If the field contained a character at the last display and it has not been changed
to a blank, the TOG is not performed.

o If the field contained a blank and now contains a character, the TOG is
performed.

This is to ensure the selection is not deselected by a different character. Only by
blanking the field should the variable be deselected.

The following TOG statement example in w uses both single and multiple
mode combinations. The single mode TOG statements are prefaced with IF
statements and are performed based on the IF statement condition. The multiple
mode TOG statements are not conditional. They are performed with each pass
through this processing section.

)PROC
IF (&CLS =
T0G (S,C
IF (&CLS =
T0G (S,C
IF (&CLS = 3
TOG (S,CLS,&CHLUXRY,'0','1")
IF (&PERFMOD "= ' ')
&PERFMOD = '/
&PERFORM = 'MODERATE'
ELSE &PERFORM = '0'
TOG (M,PERFMOD,&CHPERFO,'0"','1")
IF (&PERFSUP = ' ')
&PERFSUP = '/
&PERFORM = 'SUPER'
ELSE &PERFORM = '0'
TOG (M,PERFSUP,&CHSUPER,'0','1")
IF (&PERFULT = ' ')
&PERFULT = '/'
&PERFORM = 'ULTRA'
ELSE &PERFORM = '0'
TOG (M,PERFULT,&CHULTRA,'0','1")
YEND

CHSPORT, '0','1")

1)
LS,&
2)
LS,&CHSEDAN, '0",'1")

)

Figure 71. TOG Statement Example

The VEDIT Statement

The VEDIT statement identifies the variables on which ISPF must do mask
validation. The VEDIT statement should precede all other)PROC statements that
involve variables, such as the VER statement or the VPUT statement. It must
precede any statements that refer to a VMASKed variable. A VEDIT statement
must be coded for all masked variables defined in the panel. An example is shown

in Eigure 72 on page 25|

VEDIT (variable [,MSG=value])

Chapter 6. Panel Definition Statement Reference 251

VEDIT Statement

where:

variable
Specifies the name of a dialog variable, whose value is to be verified against
the mask pattern specified by the VMASK service.

MSG=value
Optional. Can be set to a message ID in the processing section to cause a
message to be displayed.

JATTR DEFAULT(%+_)
@ TYPE(INPUT) INTENS(LOW)

)BODY

Gfmmm e e TEST PANEL--=--=-mmm e o
%COMMAND ===> ZCMD

+ PHONE %===>@CVAR + (999)999-999
+ TIME %===>@FVAR + HH :MM

+

+

+

+

+ Press%ENTER+to leave this panel
)INIT

)PROC

VEDIT (CVAR)
VEDIT (FVAR)
)END

Figure 72. VEDIT Example

The VER Statement

Use the verify statement, VER, to check that the current value of a variable meets
some criteria. Typically, it is used in the processing section to verify the data stored
in a dialog variable. Verification of an input variable value is performed after the
value has been stored in the variable pool. The current rules for padding,
justification, and VDEFINE apply to the value stored in the pool. ISPF provides
several types of verification, as described below.

252 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

VER Statement

VER (variable [NONBLANK] keyword [,MSG=valuel)

ALPHA

ALPHAB

BIT

DBCS

DSNAME

DSNAMEF

DSNAMEFM

DSNAMEPQ

DSNAMEQ

EBCDIC

ENUM

FILEID

HEX

IDATE

INCLUDE[IMBLK] valuell[,value?]
IPADDR4

ITIME

JDATE

JSTD
LEN,relational-operator,expected-length
LIST,valuel[valueZ...]
LISTV,varlist
LISTVX,varlist
LISTX,valuel,valueZ,...
MIX

NAME

NAMEF

NUM

PICT,string
PICTCN,mask-character,field-mask,string
RANGE, lower, upper
STDDATE

STDTIME

where:

variable
Name of the variable to be checked.

NONBLANK

Optional keyword. Specifies that the variable must contain a value and not all
blanks. NONBLANK, or NB, can be specified with another type verification,
such as ALPHA, NUM, or HEX. Do this by specifying the NONBLANK
keyword after the variable name but before the other keyword. Example:

VER (&A,NB,PICT,NNN-NNNN)

is equivalent to:

VER (&A,NONBLANK)
VER (&A,PICT,NNN-NNNN)

If the variable does not meet the verification criteria, ISPF displays a message.
The message can be specified in the MSG=value parameter, where value is a
message ID. If no message is specified, an ISPF-supplied message is displayed,
based on the type of verification. Even if a VER fails, processing of the panel’s
)PROC and)REINIT statements is performed.

keyword

Specifies the verification criteria. One of the following keywords must be
specified:

Chapter 6. Panel Definition Statement Reference 253

VER Statement

ALPHA

The variable must contain only lowercase or uppercase alphabetic
characters (A-Z, a-z, #, $, or @). Blanks are not allowed.

ALPHAB

The variable must contain only lowercase or uppercase alphabetic
characters (A-Z or a-z). Blanks are not allowed.

The variable must contain all zeros and ones.

DBCS

The variable must contain only valid DBCS characters.

DSNAME

The variable must contain a valid TSO data set name. A data set name
qualifier must begin with an alphabetic character (A-Z, $, @, or #). The
remaining characters must be either uppercase alphanumeric or a hyphen
(-). A period is used to connect each qualifier in the data set name.

ISPF first determines if the TSO/E NOPREFIX PROFILE option is in use. If
it is, ISPF does use a prefix in the calculation of the data set length. A
maximum of 44 characters can be entered for a data set name, if that data
set name is enclosed in quotes. If the TSO/E NOPREFIX PROFILE option
is in use, a maximum of 44 characters can be entered for a data set name
when it is not enclosed within quotes. If the TSO/E NOPREFIX PROFILE
option is not in use, a maximum of 42 characters can be entered for a data
set name, not enclosed in quotes. ISPF uses the minimum data set prefix of
two characters (one character and a period separator) during its calculation
of the data set name length.

DSNAMEF

This parameter provides the same function as DSNAME with the
additional feature that asterisks (*) and percent signs (%) can be used
within the qualifiers. You can use DSNAMETF to filter a list of data sets.

A single asterisk within a qualifier indicates that zero or more characters
can occupy that position. Consecutive asterisks are not valid within a
qualifier.

A single percent sign indicates that any one single alphanumeric or
national character can occupy that position. One to eight percent signs can
be specified in each qualifier.

DSNAMEFM

This parameter provides the same function as DSNAMEF, but asterisks (*)
and percent signs (%) can only be used within a member name, not within
the qualifiers. You can use DSNAMEFM to filter members in a data set.

A single asterisk within a member name indicates that zero or more
characters can occupy that position.

A single percent sign indicates that any one single alphanumeric or
national character can occupy that position. One to eight percent signs can
be specified in each member name.

DSNAMEPQ

This parameter provides the same function as DSNAMEQ, except if the
TSO data set name starts with a parenthesis and no closing parenthesis is
found, DSNAMEPQ adds the closing parenthesis and the end quote.

254 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

VER Statement

DSNAMEQ

This parameter provides the same function as DSNAME with the
additional feature that if the TSO data set name starts with a quotation
mark and no ending quotation mark is found, DSNAMEQ adds the ending
quotation mark for you.

EBCDIC

The variable must contain only valid EBCDIC characters.

ENUM

The variable can contain, in addition to numeric characters:
Plus sign (+)
Negative number indicators
Delimiter symbols
Decimal symbol (.)
Certain national language decimal symbol ().

ISPF ignores leading blanks. Blanks between characters (except the French
language delimiter) and trailing blanks are not allowed. This includes
blanks between leading or trailing signs and the adjacent character. Use of
any characters other than those listed just above results in ISPF issuing an
appropriate error message.

The ENUM parameter allows verification of a numeric variable that has
been expressed in a more natural style. ISPF verifies variable values for
correct decimal and comma notation plus correct sign placement.

Negative number indicators include a leading or trailing minus sign and a
number enclosed by parentheses. The decimal and delimiter symbols can
vary according to national language. The negative number indicators are
common to all national languages.

Use of delimiter symbols is optional. However, if they are used, ISPF
validates the delimiter symbols beginning at the left-most symbol that it
finds in the variable being verified. In case of an invalid placement or
omission of a delimiter symbol, ISPF issues an appropriate error message.

Use of the decimal symbol is optional. A maximum of one decimal symbol
is allowed. If used, the decimal must be correctly placed in relation to any
delimiter symbols used. Delimiter symbols are not allowed to the right of a
decimal symbol. In case of an invalid placement of a decimal symbol, ISPF
issues an appropriate error message. m illustrates decimal and
delimiter symbol use for each of the national languages supported by ISPF.

Table 14. Decimal and Delimiter Symbols

Language Whole Fractional
Danish 999,999.88 0.789
English 999,999.88 0.789
French 999.999,88 0,789
German 999.999,88 0,789
Italian 999.999,88 0,789
Japanese 999,999.88 0.789
Korean 999,999.88 0.789
Portuguese 999.999,88 0,789

Chapter 6. Panel Definition Statement Reference

255

VER Statement

Table 14. Decimal and Delimiter Symbols (continued)

Language Whole Fractional
Spanish 999.999,88 0,789
Traditional Chinese 999,999.88 0.789
Simplified Chinese 999,999.88 0.789
Swiss-German 999.999,88 0,789

The variable being verified can contain leading blanks. Any trailing blanks
in the variable’s value in the variable pool cause a verify error condition.
Trailing blanks result from defining the variable by using the VDEFINE
service with the NOBSCAN option specified. These trailing blanks are not
overlaid when the variable is updated by a panel operation if the
corresponding panel field has a justification attribute of LEFT or ASIS.

Note: ISPF treats fields containing the non-numeric characters allowed
when using VER ENUM as character fields. To use these fields in
numeric operations, an installation can need to provide a routine to
convert the fields from character to numeric data. The ISPF
VDEFINE exit routine is one option available for incorporating these
conversion routines.

[Cable 13 shows examples of results when verifying variable values
(English) with the ENUM keyword specified.

Table 15. Verifying Variable Values with the ENUM Keyword Specified

Value Results Reason

+2574 Valid Leading plus sign is allowed

-2574 Valid Leading minus sign allowed

25.74 Valid Decimal allowed

2574 Valid Leading decimal allowed

2,574 Valid Delimiter character allowed (but not
required)

(2,574) Valid Alternate method of showing a negative
value allowed

2574- Valid Trailing minus sign allowed

2574+ Invalid Trailing plus sign not allowed

-2574- Invalid Double negative indication not allowed

(2,574) Invalid Two errors; blanks not allowed between
either sign indicator and the adjacent
character

35,543785 Invalid If used, the delimiter character must be
inserted at every appropriate point
(35,543,785)

4,5932.673 Invalid Delimiter must be positioned in relation to
decimal (45,932.673)

33.452.78 Invalid Only one decimal allowed in numeric field

8.364,798 Invalid Delimiter not allowed to right of decimal

256 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

VER Statement

FILEID
The variable must contain a valid file ID in CMS syntax. The file name and
file type, if given, must be from 1-8 alphanumeric characters, including
A-7Z,0-9, $, #, @, +, - (hyphen), : (colon), and _ (underscore). The filemode
must be a single letter (A-Z), optionally followed by a single digit (0-9). In
addition, one or more fields of the fileid can be an asterisk (*) or a string of
characters followed by an asterisk. For example:

trx status
All files having a file name beginning with the letters tr and
having a file type of status.

* exec All files having a file type of exec.

HEX
The variable must contain only hexadecimal characters (0-9, A-F, a—f).

IDATE
The international date (IDATE) format contains 8 characters, including the
national language date delimiter. The format represents a date expressed in
a 2-digit year (YY), month (MM), and day (DD). Valid values for YY are
00-99. Valid values for MM are 01-12. Valid values for DD are 01-31. ISPF
verifies for a valid date and national language date delimiter. For the
United States, the format is YY/MM/DD.

INCLUDE [IMBLK] valuell,value2]
Defines a list of value parameters, each specifying the character types a
verify field is allowed to contain.

IMBLK
Optional positional subparameter. Indicates that the variable is allowed
to contain imbedded blanks. Any leading or trailing blank characters
are ignored.

valuel,value2
Specifies ALPHA, ALPHAB, or NUM; at least one value must be
specified. The specification of two different values are combined and
indicate to ISPF that the field can contain data of either type. ISPF
issues an error message if more than two values are specified.

Example:

)PROC
VER (&vara,NB,INCLUDE,IMBLK,ALPHAB,NUM,MSG=NSLOO1)
VER (&varb,NB,INCLUDE, IMBLK,NUM,MSG=NSL002)
VER (&varc,NB, INCLUDE,ALPHA,NUM,MSG=NSL003)

This example illustrates that the variable vara can contain any alphabetic
(A-Z or a-z) or numeric character as well as imbedded blanks; varb can
contain numeric characters only and imbedded blanks; and variable varc
can only contain alphabetic characters (A-Z, a-z, #, $, or @) and/or
numeric characters (0-9), but no imbedded blanks.

IPADDR4
The variable must contain a valid IP (Internet Protocol) address in dotted
decimal notation (as the decimal representation of four 8-bit values,
concatenated with dots). For example, 128.2.7.9 is a valid IP version 4
address. The first octed (8-bit value) can range from 0 to 223 in decimal
notation. The remaining three octets of the IP version 4 address can range

Chapter 6. Panel Definition Statement Reference 257

VER Statement

from 0 to 255 in decimal notation. IPADDR4 verifies standard IP version 4
IP addresses. IPADDR4 does not support Classless Inter-Domain Routing
(CIDR) notation.

ITIME

The international date (ITIME) format contains 5 characters, including the
national language time delimiter. The format represents a date expressed in
a 2-digit hour (HH), and a 2-digit minute (MM). Valid values for HH are
00-23. Valid values for MM are 00-59. For the United States, the format is
HH:MM.

JDATE

The Julian date (JDATE) format contains 6 characters, including the period
(.) delimiter. The format represents a date expressed in a 2-digit year (YY),
and a 3-digit day of the year (DDD). Valid values for YY are 00-99. Valid
values for DDD are 001-365 (or 001-366 for leap years). The format is
YY.DDD.

JSTD

The Julian standard date (JSTD) format contains 8 characters, including the
period (.) delimiter. The format represents a date expressed in a 4-digit
year (YYYY), and a 3-digit day of the year (DDD). Valid values for YYYY
are 0000-9999. Valid values for DDD are 001-365 (or 001-366 for leap years).
The format is YYYY.DDD.

LEN,relational-operator,expected-length

The length of the variable (number of characters) must satisfy the
condition expressed by the relational operator and expected length.

You can use the LEN function in a panel’s)INIT,)REINIT, or)PROC
section to verify the number of characters (bytes) in a variable that is
currently residing in the variable pool.

For DBCS character strings the number of bytes in the string is twice the
number of characters.

relational-operator
Valid relational operators are:

= or EQ

Equal to
<or LT

Less than
>or GT

Greater than
<=or LE

Less than or equal
>= or GE

Greater than or equal
-= or NE

Not equal
=-> or NG

Not greater than
< or NL

Not less than.

You can specify the relational operator either as a special symbol (=, <,
and so forth) or as a character symbol (EQ, LT, and so forth) expressed
in uppercase. A relational operator can be expressed either as a literal

258 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

VER Statement

value (remember to enclose special symbol values in quotes) or as a
dialog variable containing the value.

expected-length
The expected-length operand is a positive number having a maximum
of 5 characters, with which ISPF compares the number of characters in
the variable data. Like the relational operator, the expected-length
operand can be expressed as a literal value or as a dialog variable
containing the value.

Example:
VER (&NAME,LEN, '<=',8)

This statement verifies that the number of characters defining the value
of variable &NAME is less than or equal to 8.

Example:
VER (&NAME,LEN,NG,&SIZE)

This statement verifies that the number of characters defining the value
of variable &NAME is not greater than the value of dialog variable
&SIZE

When input fields are stored in their corresponding dialog variables,
any keyed leading or trailing pad characters associated with right or
left justification of the variable field are deleted prior to being stored.

The length of a variable, used by ISPF for comparison, is the total
number of characters in the variable as it is currently stored in the
variable pool. Thus, for a variable created using the VDEFINE service
with NOBSCAN specified, any trailing blanks are included in the
length value used for comparison.

If a variable has been defined using the VDEFINE service but currently
has no value, ISPF uses a length value of zero for comparison.

LIST,valuel,value2, ...
The variable must contain one of the listed values. The maximum number
of listed values allowed is 100.

LISTV,varlist
Allows the use of a variable containing a list of values to be used for
variable field verification.

varlist
When defined within the panel, this is the name of a variable,
preceded by an &, that contains a list of values that will be compared
to the value contained in the verify variable. The varlist variable can
contain up to 100 values. Each value in the varlist variable must be
delimited by a comma or at least one blank. A value in the varlist
variable containing any of the following special characters should be
enclosed in single quotes (" ’):

Blank < (+ 1);~-,>:=

To specify the ampersand character in a value contained in the varlist
variable, or a period in a value contained in the varlist variable when it
immediately follows a dialog variable name, you must double these

Chapter 6. Panel Definition Statement Reference 259

VER Statement

characters. To specify the single quote character in a value contained in
the varlist variable, use two single quote characters enclosed within
single quotes ().

If the varlist is set in the dialog, use the notation that is correct for the
programming language used to code the dialog.

Example:
)PROC

VER (&areacode,NONBLANK,LISTV,&varlist,MSG=NSLO11)

The variable specified in the VER LISTV variable parameter must be set
before being referenced in the statement. (The variable used in the
previous example could have been assigned the following values in the
)JINIT section of the panel definition.)

&varlist ='919 914 212'

Note: To have quotes as part of an assignment, you must double the
number of quotes used in each previous layer. For example:

&1listl = 'one o''ne' yields one o'ne
&list2 = "two t''"'wo' yields two t''wo
LISTVX,varlist

The varlist exclude (LISTVX) keyword enables you to use a variable
containing a list of values that the field variable must NOT contain. The
use of this parameter implies that the keyword non-blank is used. The
varlist follows the same rules as the varlist for LISTV.

LISTX,valuel,value2,...
The list exclude (LISTX) keyword enables you to list values that the field
variable must NOT contain. The use of this parameter implies that the
keyword non-blank is used. The maximum number of listed values allowed
is 100.

MIX
The variable must contain all valid DBCS, EBCDIC, shift-in, and shift-out
characters.

NAME
The variable must contain a valid name, following the rules of member
names, up to eight alphanumeric characters (A-Z, #, $, @, 0-9). The first
character must be alphabetic (A-Z, $, @, or #).

NAMEF

This parameter provides the same function as NAME with the additional
feature that asterisks (*) and percent signs (%) can be used within the
qualifiers. You can use DSNAMEEF to filter a list of data sets.

A single asterisk within a qualifier indicates that zero or more characters
can occupy that position. Consecutive asterisks are not valid within a
qualifier.

A single percent sign indicates that any one single alphanumeric or
national character can occupy that position. One to eight percent signs can
be specified in each qualifier.

260 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

VER Statement

NUM
The variable must contain all numeric characters (0-9). However, leading
blanks are acceptable.

PICT,string

The variable must contain characters that match the corresponding type of
character in the picture string. The string parameter can be composed of
the following characters:

C — any character

A — any alphabetic character (A-Z, a-z, #, $, @)

N — any numeric character (0-9)

9 — any numeric character (same as N)

X — any hexadecimal character (0-9, A-F, a—f)

In addition, the string can contain any special characters that represent
themselves. For example:

VER (xxx,PICT,'A/NNN")

In this example, the value must start with an alphabetic character, followed
by a slash, followed by 3 numeric characters. The length of the variable
value and the picture string must be the same. Trailing blanks are not
included.

PICTCN,mask-character,field-mask,string

The VER statement keyword PICTCN, with its three parameters, enables
you to check a variable for specific constants within the variable.

VER (variable,PICTCN,mask-character,field-mask,string)

variable
Name of the variable to be checked.

mask-character
Any special character that represents itself. If you select one of the
following special characters as a mask-character, the
mask-character and the field-mask containing the mask-character
must be enclosed in quotes:
- ‘not” symbol

equal sign

period

greater than symbol

less than sysmbol

right parenthesis

left parenthesis

single quote

N~~~ AV "

Note: The mask-character cannot be one of the picture string
characters (C,A,N,9,X,c,an,x).

field-mask
A combination of constants and the mask-character. The field-mask
is used to audit the string. For example, your mask-character is a
slash mark (/) and the constants are V,R, and M in the positions
shown: 'V//R//M//’. A single quote can be used as a constant
but avoid using a mask-character that must be enclosed in single
quotes when a single quote is a constant.

string

Chapter 6. Panel Definition Statement Reference 261

VER Statement

A combination of constants and picture string characters. The
picture string characters can be:

C — any character

A — any alphabetic character (A-Z, a-z, #, $, @)

N — any numeric character (0-9)

9 — any numeric character (same as N)

X — any hexadecimal character (0-9, A-F, a—f)

The picture string characters must be in the positions indicated by
the mask-character in the field-mask parameter. For example,
"VNNRNNMNN".

The three parameters mask-character, field-mask, and string can be
dialog variables.

Examples

In the following VER PICTCN statement the mask-character is the not
symbol (=), the constants are VR, and M. The picture string characters are
N (any numeric character 0-9). If fld1 = V1I0R20MOO it passes the
verification. If fld1 = VI0R20MOY it fails because Y is not a numeric
character.

VER (&f1d1,PICTCN,'~","'V==R==M-=" VNNRNNMNN)

In this VER PICTCN statement the mask-character is the asterisk (*), the
constants are O and S. The picture string characters are N (any numeric
character 0-9) and A (any alphabetic character A-Z, a-z#,$,@). If fld1 =
OS390R8 it passes verification. If fld1 = OS39018 it fails because 1 is not an
alphabetic character.

VER (&f1d1,PICTCN,*,0S+***xx OSNNNAN)

RANGE, lower,upper
The variable must contain all numeric characters (0-9). It can also contain a
leading plus (+) or minus (—). Its value must fall within the specified
lower and upper limits, which can be either positive or negative. The
length of the specified variable is limited to 16 digits, in addition to the
plus or minus sign. Further, the lower and upper parameters can consist of
no more than 16 digits each, in addition to the plus or minus sign, if used.
Any characters in excess of the 16 allowed are truncated.

STDDATE
The standard date (STDDATE) format contains 10 characters, including the
national language date delimiter. The format represents a date expressed in
a 4-digit year (YYYY), 2-digit month (MM), and a 2-digit day (DD). Valid
values for YYYY are 0000-9999. Valid values for MM are 01-12. Valid values
for DD are 01-31. ISPF verifies for a valid date and national language date
delimiter. For the Untied States, the format is YYYY/MM/DD.

STDTIME
The standard time (STDTIME) format contains 8 characters, including the
national language time delimiter. The format represents a time expressed in
a 2-digit hour (HH), 2-digit minute (MM), and a 2-digit second (SS). Valid
values for HH are 00-23. Valid values for MM are 00-59. Valid values for SS
are 00-59. For the Untied States, the format is HH:MM:SS.

MSG=value
value contains the message issued if the current value of the variable does not
meet the criteria being checked.

262 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

VER Statement

For all tests except NONBLANK, a blank value is acceptable. That is, if you enter a
value, or leave a nonblank initial value unchanged, it must conform to the

specified condition. If a variable value is stored as all blanks, the value passes any
verification test except NONBLANK.

w shows a sample panel with VER statements to verify that information
entered meets the following criteria:

e The truncated value of TYPECHG is N, U, or D.

* The three name variables, LNAME, FNAME, and I, contain all alphabetic
characters.

¢ The PHA (area code) field contains all numeric characters and a length of 3.

e The PHNUM (local number) field contains 3 numeric characters followed by a
hyphen, followed by 4 numeric characters.

For the TYPECHG test, a message ID has been specified in the event that the test
fails. In all the other cases, an ISPF-provided message is displayed if the variable
fails the verification test.

) BODY
R — EMPLOYEE RECORDS -----mmmmmmmmmmmmmmmmn
%COMMAND===>_ZCMD P
+
%EMPLOYEE SERIAL: &EMPSER
+
+ TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)
+
+ EMPLOYEE NAME:
+ LAST %===>_LNAME +
+ FIRST %===>_FNAME +
v INITIAL%===>_I+
+
+ HOME ADDRESS:
+ LINE 1 %===>_ADDRI -
+ LINE 2 %===>_ADDR2 +
+ LINE 3 %===>_ADDR3 +
+ LINE 4 %===>_ADDR4 +
+
+ HOME PHONE:
+ AREA CODE %===>_PHA+
+ LOCAL NUMBER%===>_PHNUM +
+
)INIT
IF (8PHA = ' ')
&PHA = 301
&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)
) PROC

&TYPECHG = TRUNC (&TYPECHG,1)

VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)
VER (&LNAME,ALPHAB)

VER (&FNAME,ALPHAB)

VER (&I,ALPHAB)

VER (&PHA,LEN,'="',3)

VER (&PHA,NUM)

VER (&PHNUM,PICT,'NNN-NNNN')

)END

Figure 73. Sample Panel Definition with Verification

Chapter 6. Panel Definition Statement Reference 263

VGET Statement

The VGET Statement

The VGET statement copies variables from the shared or application profile
variable pool.

VGET name-list [ASIS|SHARED|PROFILE]

where:

name-list
Specifies one or more dialog variables, separated by commas or blanks,
whose values are to be copied from the shared or application profile pool.
The names are passed in standard name-list format. A name-list of more
than one name must be enclosed in parentheses.

ASIS Variable values are to be copied from the shared variable pool, if found
there; otherwise, they are to be copied from the application profile pool.
ASIS is the default value.

SHARED
Variable values are to be copied from the shared variable pool.

PROFILE
Variable values are to be copied from the application profile variable pool.
ISPF deletes any shared pool variables having the same name, even if they
do not exist in the application profile pool.

Note: Specifying a nonmodifiable variable in a VGET statement in a selection
panel results in a severe error.

DISPLAY Service Panel

When processing a DISPLAY or TBDISPL service request, ISPF normally searches
for dialog variable values in the order:

1. Function pool

2. Shared pool

3. Application profile pool

To give you control over the pool from which ISPF retrieves variable values, the
VGET statement in a panel’s)INIT,)REINIT, or)PROC section allows you to
specify that ISPF is to copy one or more variable values from either the shared
pool or application profile pool to the function pool. If one or more of these
variables already exist in the function pool, their values are updated with the
values of the corresponding variables accessed by the VGET statement. Any of
these variables that do not exist in the function pool are created and updated with
the values of those accessed by the VGET statement.

Example:

)PROC
VGET (XYZ ABC) PROFILE

This VGET statement in a panel’s)PROC section causes the current values for
variables XYZ and ABC to be copied from the profile pool and updated in the
function pool and used as the variable values for display of a panel field. If XYZ
and ABC do not already exist in the function pool, they are created then updated.

SELECT Service Panel

At the time ISPF processes a SELECT service request, there is no function pool.
Therefore, ISPF normally searches for dialog variable values in the order:

264 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

VGET Statement

1. Shared pool
2. Profile pool

When specified on a selection panel, the VGET statement functions as follows:

* If the variable value is taken from the profile pool, the shared pool value, if it
exists, is deleted.

e Otherwise, the VGET statement has no effect.

Further processing of the variables on the selection panel, other than that by the
VGET statement, is described in ISPF User’s Guide

The following is an example of a VGET statement on a selection panel, where the
specified variable exists in both the shared and profile pools:

VGET FNAME PROFILE

This statement causes ISPF to retrieve the current value of variable FNAME from
the profile pool and display it in the corresponding panel field. Any updates to the
variable are made to the profile pool. ISPF deletes the variable from the shared
pool.

The VPUT Statement

While variables entered from a panel are automatically stored in the function
variable pool, variables can also be stored in the shared and profile variable pools
by VPUT statements used in the)INIT,)REINIT, JABCINIT, JABCPROC, or)PROC
sections of the panel definition.

VPUT name-list [ASIS|SHARED|PROFILE]

where:

name-list
Specifies the names of one or more dialog variables whose values are to be
copied from the function pool to the shared or profile pool.

ASIS Specifies that the variables are to be copied to the pool in which they
already exist or that they are to be copied to the shared pool, if they are
new. If the variables exist in both the shared and profile pools, they are
copied only to the shared pool.

SHARED
Specifies that the variables are to be copied to the shared pool.

PROFILE
Specifies that the variables are to be copied to the application profile pool.
Any shared pool variables with the same names are deleted.

Example:

)PROC
VPUT (XYZ ABC) PROFILE

This statement causes current values for variables XYZ and ABC to be stored in the
profile pool by a VPUT operation.

The syntax for the VPUT statement is the same as that for the VPUT service when

it is invoked from a command procedure except that the ISPEXEC command verb
is omitted.

Chapter 6. Panel Definition Statement Reference 265

Using ISPF Control Variables

Using ISPF Control Variables

266

Control variables are used to control and test certain conditions pertaining to the
display of a panel or message. Only those that apply to displays are discussed in
this section. They can be used only in the)INIT,)REINIT, and)PROC sections of a
panel definition.

This section describes the following control variables:
* .ALARM - page

e ATTR - page%

+ .ATTRCHAR - pagsﬂ@
* .AUTOSEL - pagsﬁl

* .CSRPOS - page

+ .CSRROW - page bzd

+ .CURSOR - pa%]@

* .HELP - page

* .MSG - page bzd

+ NRET - page bz3

e .PFKEY - page bzd

* .RESP - page bzd

e .TRAIL - page bz7

* .ZVARS - page bz2.

Control variables are automatically reset to blank when the panel display service
first receives control. If . MSG, .CURSOR, and .CSRPOS are still blank after
processing of the initialization section, they are set to the values passed by the
calling sequence, if any, for an initial message or cursor placement. Under certain
conditions, processing of the initialization section is bypassed.

Once .CURSOR, .CSRPOS, .MSG, and .RESP have been set to nonblank by panel
processing, they retain their initial values until the panel is displayed, or
redisplayed, at which time they are reset.

The control variables
ALARM
AUTOSEL
.CURSOR
.HELP
MSG
.PFKEY
.RESP

have a length of 8 bytes. When set in an assignment statement to a longer value,
the value is truncated. If these control variables are tested in a conditional
expression, the compare value (literal or dialog variable) must not be longer than
8 bytes.

shows an example in which both .HELP and .CURSOR have
been set in the)INIT section of the panel definition.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

.ALARM Control Variable
N

%COMMAND===>_ZCMD 5

+

%EMPLOYEE SERIAL: &EMPSER
TYPE OF CHANGE%===> TYPECHG + (NEW, UPDATE, OR DELETE)

EMPLOYEE NAME:
LAST %===>_LNAME +
FIRST %===>_FNAME +
INITIAL%===>_I+

HOME ADDRESS:
LINE 1 %
LINE 2
LINE 3
LINE 4

> ADDR1
> ADDR2
> ADDR3
> ADDR4

mnm o u
nw w nn
n un nn
+ + + +

S OF° oF of

HOME PHONE:
AREA CODE %
LOCAL NUMBER%

===>_PHA+
===>_ PHNUM +

— 4+ + A+ A+ F A+ F A+ o+

INIT
.HELP = PERS032
.CURSOR = TYPECHG
IF (&PHA = ' ')
&PHA = 301
&TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC
&TYPECHG = TRUNC (&TYPECHG,1)
VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)
VER (&LNAME,ALPHAB)
VER (&FNAME,ALPHAB)
VER (&I,ALPHAB)
VER (&PHA,NUM)
VER (&PHNUM,PICT, 'NNN-NNNN')

JEND

Figure 74. Sample Panel Definition with Control Variables

.ALARM

The .ALARM control variable can be set in an assignment statement within the
)INIT,)REINIT, or)PROC sections to control the terminal alarm.

.ALARM = value

where:

value
YES, NO, a blank, or null.
YES Causes the terminal alarm to sound when the panel is displayed.
NO Causes the terminal alarm to be silent when the panel is displayed.
blank Causes the terminal alarm to be silent when the panel is displayed.
null Causes the terminal alarm to be silent when the panel is displayed.

Note: value can also be a variable containing the value YES, NO, a blank or
null.

Examples:

Chapter 6. Panel Definition Statement Reference 267

.ALARM Control Variable

268

.ALARM
.ALARM

YES
&ALRM

In the first example, the .ALARM setting is YES, which causes the terminal alarm
to sound when the panel is displayed. In the second example, the alarm setting can
be turned on (YES) or off (NO) according to the current value of the variable
ALRM. If the panel is displayed with a message that has .ALARM = YES, the
alarm sounds regardless of the setting of . ALARM within the panel assignment
statement.

Control variable .ALARM can also appear on the right side of an assignment
statement. For example:

&ALRM = .ALARM

might be used to save the setting of .ALARM in variable ALRM.

.ATTR and .ATTRCHAR

.ATTR
The .ATTR control variable can be set in the)INIT,)REINIT, or)PROC section to
allow attributes to be changed on a field basis.

.ATTR (field) = 'keyword (value),keyword (value)....'

where:

field
Can be:

* The name of any input or output field that occurs in the panel body or area
section.

e The .CURSOR control variable, which indicates the field where the cursor is
currently positioned.

* The name of a dialog variable, preceded by an ampersand. The variable

must contain the name of an input or output field that occurs in the panel
body, .CURSOR, or a blank.

keyword (value)
A legitimate attribute keyword and value for that attribute.

Examples:

.ATTR (.CURSOR)
.ATTR (&FLD)
.ATTR (&FLD)

"COLOR(YELLOW) HILITE(REVERSE)'
"HILITE (&HLTE)"
'PAS (ON) '

In the first example, the color and highlighting of the field containing the cursor is
overridden. In the second example, the name of the field whose highlighting
attribute is to be overridden is found in dialog variable FLD and the highlighting
value is in variable HLTE.

Overriding the cursor field (CURSOR) and the alternate long or short message
field attributes can be particularly useful if the panel is being redisplayed because
of a translation or verification failure. When such a failure occurs, the cursor is
automatically placed on the field in error and the message ID to be displayed is
automatically placed in the message area.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

.ATTR and .ATTRCHAR Control Variables

For example, if SMFIELD is specified on the) BODY statement as the alternate
short message field, a)REINIT section could be specified as follows:
JREINIT

.ATTR (.CURSOR)
.ATTR (SMFIELD)

"COLOR(RED) HILITE(USCORE)'
"HILITE(BLINK)'

This will cause the field in error to be redisplayed in red and underscored, and the
error message to blink.

Only the specified attributes are overridden. Any other attributes associated with
the field remain in effect.

When a field attribute is overridden in the)INIT section of a panel, the override
remains in effect if the panel is redisplayed (unless the attribute is again
overridden by another statement in the)REINIT section). However, an attribute
override in the)PROC or)REINIT section of the panel remains in effect only for a
single redisplay of that panel, should a redisplay occur. This allows one field at a
time to be highlighted as errors are found. Once the user corrects the error, the
field reverts to its normal attributes.

.ATTRCHAR
The .ATTRCHAR control variable can be set in the)INIT,)REINIT, or)PROC

section to override attributes for all fields related to an existing attribute character.

.ATTRCHAR(<char)="keyword(value) ,keyword(value)"'

where:
char
Can be:

* One of the special characters, one-digit character, or two-digit hexadecimal
codes used to denote attribute characters within the panel.

* The name of a dialog variable, the value of which must contain an attribute
character, two-digit hexadecimal code, or a blank.

char follows the rules for literals. That is, it must be enclosed in single quotes if

it contains any of the special characters listed in Ellsing Variables and Iiteral

”

keyword (value)
A legitimate attribute keyword and value for that attribute.

When a field attribute is overridden in the)INIT section of a panel, the override
remains in effect if the panel is redisplayed unless the attribute is again overridden
by another statement in the)REINIT section. However, an attribute override in the
)PROC or)REINIT section of the panel remains in effect only for a single redisplay
of that panel, should a redisplay occur.

See 'Relationship to Control Variables ATTR and ATTRCHAR” on page 203 for a

description of appropriate and inappropriate override conditions for CUA and
basic panel-element attributes.

Using .ATTR and .ATTRCHAR with Table Display Panels
The effect that an attribute override has on a table display panel depends on
whether the override is permanent (overridden in the)INIT section) or temporary

Chapter 6. Panel Definition Statement Reference 269

.ATTR and .ATTRCHAR Control Variables

270

(overridden in the)REINIT or)PROC section). If the attribute override for a field
or attribute character in the scrollable section of a panel is:

* Permanent, the override for the specified field or character is effective for every
model set displayed

* Temporary, the override for the specified field or character is effective for only
the last selected model set processed

Any scrolling activity performed when temporary overrides are in effect causes the
affected attributes to be cleared, including any temporary overrides in the fixed
portion of the panel, and the original attributes to be put into effect. In addition, if
a table is redisplayed after model sets have been selected and a scroll has taken
place, any .ATTR or .ATTRCHAR temporary overrides are not put into effect.

Things to Remember When Using Attribute Override Control

Variables

¢ The .ATTR or .ATTRCHAR control variable cannot appear on the right side of
an assignment statement.

* Several characteristics (for example, INTENSITY, COLOR, and CAPS) can be
changed with one attribute override statement. However, only one field can be
changed by a single .ATTR statement, and only one attribute character or
hexadecimal code can be changed by a single ATTRCHAR statement.

* The TYPE keyword can be overridden by .ATTR or .ATTRCHAR. You can
change the TYPE:

from INPUT/CUA input types to OUTPUT/CUA output types
from OUTPUT/CUA output types to INPUT/CUA input types

from TEXT/CUA text types to TEXT/CUA text types
from DATAIN to DATAOUT
from DATAOUT to DATAIN

Exceptions: CUA TEXT types AB, ABSL, PS, RP

However, if you attempt to change the TYPE of a field from TEXT to INPUT, a
dialog error will result.

See [Relationship to Control Variables ATTR and ATTRCHAR” on page 203 for

a description of appropriate and inappropriate override conditions for CUA and
basic panel-element attributes.

* The command field or scroll amount field cannot be changed to TYPE(OUTPUT)
by an attribute override assignment.

* The first .ATTR assignment that is encountered within a panel section for a
particular field is the one that is honored. Subsequent .ATTR assignments for
that field are ignored. In the following example, FIELD1 will be blue and
FIELD2 will be yellow:

)INIT
.ATTR(FIELD1) = COLOR(BLUE)
.ATTR(FIELD2) = COLOR(YELLOW)
.ATTR(FIELD1) = COLOR(RED)

* Similarly, the first . ATTRCHAR assignment that is encountered within a panel
section for a particular attribute character or hexadecimal code is the one that is
honored.

* Be careful when overriding the pad character. Since the string of overridden
attribute keywords is in quotes, the new pad character must be specified either
without quotes or in double quotes, as follows:

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

.ATTR and .ATTRCHAR Control Variables

ATTR(FIELDL) = 'PAD($)"
LATTR(FIELD2) = 'PAD(''x'')"

 If both an .ATTRCHAR assignment and an .ATTR assignment apply to the same
field, the .ATTR assignment takes precedence.

Example:
)BODY

%===> FIELD1 +
)INIT
.ATTRCHAR(_) = 'COLOR(YELLOW)"
.ATTR(FIELD1) = 'COLOR(WHITE)'
YREINIT
IF (.MSG ~= ' ')
.ATTR(FIELD1) = 'COLOR(RED) HILITE(BLINK)'
.ATTRCHAR(_) = 'COLOR(BLUE)'
)PROC
VER(&FIELD1,NB)
)END

When this panel is initially displayed, FIELD1 will be white and all other input
fields will be yellow. If the panel is redisplayed with a message, FIELD1 will be
blinking red and all other input fields will be blue. If the panel is redisplayed
without a message, FIELD1 will revert to white, and all other input fields will
revert to yellow.

.AUTOSEL

The .AUTOSEL control variable is used in conjunction with table display panels to
specify auto-selection.

.AUTOSEL = YES | NO

where:

YES
Indicates that if the CSRROW parameter or control variable is specified, the
row is to be retrieved even if the user did not explicitly select the row. This is
called auto-selection.

NO
Indicates that if the CSRROW parameter or control variable is specified, the
row is to be retrieved only if the user explicitly selects the row by entering
data in the corresponding model set on the screen.

If the CSRROW parameter or control variable is not specified, .AUTOSEL is
ignored. .AUTOSEL can be set in the)INIT or)REINIT section. Any assignment
made to .AUTOSEL in the)PROC section is ignored.

.CSRPOS

The .CSRPOS control variable can be set in the)INIT or)REINIT section and
controls where in a field the cursor is to be set.

.CSRPOS = integer
variable = .CSRPOS

where:

Chapter 6. Panel Definition Statement Reference 271

.CSRPOS Control Variable

272

integer
Specifies the position in the field to which the cursor is set. This position
applies regardless of whether the cursor placement was specified using the
CURSOR calling sequence parameter, the .CURSOR control variable in the
JINIT or)REINIT section, or the default cursor placement. If cursor-position is
not specified or is not within the field, the default is one, the first position of
the field.

The .CSRPOS control variable can appear on the right side of an assignment
statement, making it act like a function. Thus, the cursor field name and its
position within a field can be stored in variables.

Example:
&CPOS = .CSRPOS

In the preceding statement, the position (an integer value) of the cursor within the
input or output field or area is returned in variable CPOS.

.CSRROW

The .CSRROW control variable is used in conjunction with table display panels.

.CSRROW = CRP-number
variable = .CSRROW

where:

CRP-number

Table current-row-pointer number corresponding to the model set on the

display where the cursor is to be placed. If the specified row does not have a

corresponding model set displayed on the screen, the cursor is placed at the

command field. The row will be auto-selected under either of the following
conditions:

* If the CSRROW parameter is specified on the TBDISPL service either
without AUTOSEL(NO) being specified on TBDISPL or .AUTOSEL(NO)
specified as a panel definition statement.

e If the .CSRROW control variable is specified as a panel definition statement
either without AUTOSEL(NO) being specified on TBDISPL or
.AUTOSEL(NO) specified as a panel definition statement.

The .CSRROW control variable can appear on the right side of an assignment
statement, making it act like a function. Thus, the table row number corresponding
to the model set on the display where the cursor is to be placed can be stored in a
variable.

Example:
&CROW = .CSRROW

.CURSOR

The .CURSOR control variable can be set in the)INIT or)REINIT section to control
the placement of the cursor.

.CURSOR = string
variable = .CURSOR

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

.CURSOR Control Variable

where:

string
A character string that matches a field name or a DYNAMIC or GRAPHIC area
name in the panel body. Its value cannot be a character string that matches a
scrollable area name, but it can be a character string that matches a field name
within the scrollable area.

Example:
.CURSOR = DSN

This example causes the cursor to be placed at field DSN. This variable is
automatically set to the field last referred to whenever .MSG is set explicitly or
indirectly by TRANS or VER statements. The .CURSOR control variable overrides
any cursor position specified on the DISPLAY or TBDISPL service request.

Note: In GUI mode, .CURSOR can be set only to an input or pushbutton
(point-and-shoot) field. If the application attempts to set the cursor to any
other field, ISPF ignores the placement and uses the default cursor
placement.

The .CURSOR control variable can appear on the right side of an assignment
statement, making it look like a function.

Example:
&CNAME = .CURSOR

If the control variable .CURSOR is not explicitly initialized, or if it is set to blank,
the initial field where the cursor is positioned (default placement) is determined as
follows:

1. The panel body is scanned from top to bottom, and the cursor is placed at the
beginning of the first input field that meets the following criteria:

* It must be the first or only input field on a line.

* It must not have an initial value; that is, the corresponding dialog variable
must be null or blank.

¢ It must not have a field name of ZCMD.

2. If the stated criteria is not met in the panel body, the scrollable areas are
searched using the same criteria.

3. If the criteria is still not met, the cursor is placed on the first input field in the
panel body or scrollable area, usually the command field.

4. If the panel has no input fields, the cursor is placed at the upper-left corner of
the screen.

The cursor is automatically placed at the beginning of the field that was last
referred to in any panel definition statement when a message is displayed because
of:

* A verification failure that sets .MSG

¢ A MSG=value condition in a TRANS

* An explicit setting of .MSG

Examples:

&XYZ = TRANS (8A ... MSG=xxxxx)
&A = TRANS (&XYZ ... MSG=XxXxxx)
VER (&XYZ,NONBLANK) VER (&B,ALPHA)

Chapter 6. Panel Definition Statement Reference 273

.CURSOR Control Variable

274

.HELP

Assume that field XYZ exists in the panel body, but there are no fields
corresponding to variables A or B. In all the preceding examples, the cursor would
be placed on field XYZ if a message is displayed.

The .HELP control variable can be set in the initialization section to establish a
tutorial (extended help) panel to be displayed if the user enters the HELP
command.

.HELP = panelname
variable = .HELP

where:
panelname

Name of the tutorial panel to be displayed.

Example:
.HELP = ISPTE

This example causes tutorial panel ISPTE to be displayed when the user enters the
HELP command.

The .HELP control variable can appear on the right side of an assignment
statement, making it act like a function.

.HHELP

.MSG

The .HHELP control variable can be set in the initialization section to establish a
tutorial (extended help) panel to be displayed if the user enters the HELP
command from within HELP.

.HHELP = panelname

where:

panelname
Name of the tutorial panel for help to be displayed.

Example:
-HHELP = ISP0O0006

This example causes tutorial panel ISP00006 to be displayed when the user enters
the HELP command from HELP. This also happens to be the default setting. The
Dialog Tag Language generates the setting .HHELP = ISP00006 for any help panels
it builds.

The .MSG control variable can be set to a message ID, typically in the processing
section, to cause a message to be displayed.

.MSG = msgid
variable = .MSG

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

.MSG Control Variable
where:

msgid
The message ID of the message to be displayed.

Example:
.MSG = ISPEO16

This variable is automatically set by use of the MSG=value keyword on a TRANS
statement if there is no match with the listed values, or on a VER statement if the
verification fails.

The .MSG control variable can appear on the right side of an assignment
statement, making it act like a function.

.NRET

On enabled panels, the .NRET key retrieves the library names from the current
library referral list or data set, or workstation file name from the current data set
referral list. Unlike some othe dot variables, NRET can be assigned multiple times
in panel logic.

.NRET = ON|OFF|DSN|LIB

where:

ON
Sets the NRETRIEV command table entry active.

OFF
Sets the NRETRIEV command table entry inactive.

DSN
Tells ISPF that the NRETRIEV command retrieved a name from the current
data set referral list.

LIB
Tells ISPF that the NRETRIEV command retrieved a name from the current
library referral list.

Other values are reserved by ISPF. No messages are given in case of an assignment
that is not valid.

When .NRET is used as the source for an assignment statement it always returns a
null.

The user is responsible for assigning NRETRIEV to a PF key. NRETRIEV is
normally inactive but can be made active by using the .NRET=ON assignment in
the)INIT and)REINIT section of a panel. If it is turned on, .NRET=OFF must be
executed in the)PROC section of the panel. Failure to turn off .NRET in the)PROC
section of the panel can lead to errors when the NRETRIEV key is pressed on
subsequent panels.

NRETRIEV sets the following variables in the FUNCTION pool:

Variable Function

ZNRPROJ Project name

Chapter 6. Panel Definition Statement Reference 275

.NRET Control Variable

276

Variable Function

ZNRGRP1 First group name

ZNRGRP2 Second group name

ZNRGRP3 Third group name

ZNRGRP4 Fourth group name

ZNRTYPE Type name

ZNRMEM Member name

ZNRODSN Other data set name

ZNRVOL Volume associated with the other data set name

ZNRLIB Successful library retrieve (YES or NO)

ZNRDS Successful data set retrieve (YES or NO)

ZNRWSN Workstation name indicator for other data set name
(H = Host, W = Workstation)

.PFKEY

The .PFKEY control variable is set to a value that reflects the function key pressed
by a user while the panel is being displayed.

.PFKEY = value
variable = .PFKEY

where:

value
The function key (FO1-F24) pressed by a user.

The value of .PFKEY can be examined in the)PROC section of the panel and
copied into dialog variables through use of assignment statements. If no function
key is pressed by the user, .PFKEY contains blanks. .PFKEY is blank during
processing of the)INIT and)REINIT sections.

The .PFKEY control variable can appear on the right side of an assignment
statement, making it act like a function.

The .RESP control variable indicates normal or exception response on the part of the
user.

.RESP = ENTER | END
variable = .RESP

where:

ENTER
Normal response. ISPF always sets .RESP to ENTER unless the user enters an
END or RETURN command.

END
Exception response. ISPF sets .RESP to END if the user enters an END or
RETURN command.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

.RESP Control Variable

The value in .RESP can be tested in the processing section to determine the user’s
response.

Example:
IF (.RESP = END)

Setting .RESP in the)INIT or)REINIT section of the panel definition has no effect
if a message is being displayed.

The)INIT or)REINIT section can be coded with the following statements to assure
that the panel is not displayed, regardless of whether a message was specified on
the DISPLAY service request.

Example:

JINIT or)REINIT
IF (.MSG -= &Z)
MSG = &Z
.RESP = END

This variable can be set in a panel processing section to force an END or ENTER
response. This can be particularly useful if a verification has failed (or .MSG was
set) and you want that panel to be redisplayed with the message even if the user
entered END or RETURN.

The .RESP control variable can appear on the right side of an assignment
statement, making it act like a function.

-TRAIL

The .TRAIL control variable contains the remainder following a truncate (TRUNC)
operation.

variable = .TRAIL

where:

variable
Assigned the value in .TRAIL.

If the contents of a variable are truncated to a specified length, all remaining
characters are stored in .TRAIL. If the contents of a variable are truncated at the
first occurrence of a special character, the remaining characters following the
special character are stored in .TRAIL.

.ZVARS

The .ZVARS control variable can be set in the initialization section to a list of
variable names that correspond to Z place-holders in the body and/or model lines.

.ZVARS = var | '(varlist)'
variable = .ZVARS

where:

var
Name that corresponds to a Z place-holder.

Chapter 6. Panel Definition Statement Reference 277

.ZVARS Control Variable

278

varlist
One or more variable names that correspond to Z place-holders.

The .ZVARS control variable can appear on the right side of an assignment
statement, making it act like a function.

Using Z Variables as Field Name Place-Holders
In the body and area sections of a panel definition and in the model lines for a

table display panel, the name of an input or output field can be represented by the
single character Z. This serves as a place-holder; the actual name of the field is
defined in the initialization section of the panel definition.

Use of place-holders allows the definition of short fields for which the lengths of
the variable names exceed the lengths of the fields.

The actual names of these fields are assigned in the initialization section of the
panel definition. The names are in a name list, enclosed in parentheses if more
than one name is specified, assigned to the control variable .ZVARS. The first name
in the list corresponds to the first Z place-holder that appears in the body or model
lines. The second name in the list corresponds to the second Z, and so forth.

In the example shown in w, the input field labeled TYPE is 1 character long
and the next two input fields are each 2 characters long. The names of these three
fields are TYPFLD, LNGFLD, and OFFSET, respectively.

/,)BODY)
———————————————————————————— TITLE LINE === —mm e -
%COMMAND===>_7(CMD %

% .

+ TYPE $%===> 7+ (A for alpha, N for numeric)
+ LENGTH%===>_7 + (0 to 99)

+ OFFSET%===>7 + (0 to 99)

)INIT
.ZVARS = '(TYPFLD LNGFLD OFFSET)'

Figure 75. Example of Z Variable Place-Holders

The name list assigned to .ZVARS must be enclosed in single quotes because the
list contains special characters (parentheses) and blanks. As with other name lists,
either commas or blanks can be used to separate the names in the list. .ZVARS can
also be set to a dialog variable that has a valid name list as its value. For example:

.ZVARS = &NLIST

where the value of &NLIST is (TYPFLD LNGFLD OFFSET). See Defining the Ared
Bection” on page 164 for the description of how to use Z place-holders in scrollable

panel areas.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 7. ISPF Help and Tutorial Panels

Online help and tutorial panels are a set of panels that a developer can include to
provide online information for an application user. Help and tutorial panels can
contain information that is helpful to a first-time user. They also can instruct a user
to take specific actions based on a particular condition that has occurred during the
application processing.

All ISPF help panels that are created using the Dialog Tag Language display in a
pop-up window. ISPF help panels created using the ISPF panel source statements
and containing the WINDOW keyword on the panel’s)BODY statement also
display in a pop-up window. If field-level help is being displayed, the ISPF help
facility attempts to position the pop-up window relative to the object field.

The width and depth values specified on the HELP tag or on the WINDOW
keyword must be valid for the device on which these help panels are displayed.
Refer to the ISPF Dialog Tag Language Guide and Reference for details on the HELP
tag. See page Bod for details on the WINDOW keyword.

You can provide the following types of help or tutorial panels. The ISPF tutorial is
shipped with the product.

Extended help (panel help)
Provides general information about the contents of a panel. The
information in extended help can be an overall explanation of items on the
panel, an explanation of the panel’s purpose in the application, or
instructions for the user to interact with the panel.

See the description of the .HELP variable in I.HELP” on page 274 for more
information.

Field-level help
Provides help panels for fields defined on an application panel.

When the user enters the HELP command, ISPF displays the help panel
defined for the field on which the cursor is located.

You may define field-level help for action bar choices and pull-down
choices, as well as for fields within the panel body. If you are creating
panels with field level help using Dialog Tag Language, refer to the ISPF
Dialog Tag Language Guide and Reference for a description of the tag
attributes you should use. Otherwise, for further information about
defining the)HELP section of the panel, refer to L

HELP FOR HELP
Provides help for using the help or tutorial facility.

Keys help
Provides a brief description of each key defined for a panel. See @

Help” on page 93 for more information on keys help.
Message help

Provides help for ISPF messages. See 'How to Define a Message” onl

for more information.

© Copyright IBM Corp. 1980, 2001 279

Reference phrase help
Provides help for reference phrases. See I'Reference Phrase Help” on
for more information.

Tutorial
Describes the ISPF product. The tutorial is shipped with the ISPF product.
See L i “ for more information.

TUTOR command
Provides a direct path to specific tutorial panels, in effect indexing Help
hierarchies by panel identifiers.

Processing Help

You can request help from an application panel or a help panel. You can also
specify a keylist to be associated with a help panel.

Help Requests from an Application Panel

When the user enters the HELP command, ISPF displays a help or tutorial panel
according to the following sequence.
1. When a short message appears on an application panel and the user requests
HELP, ISPF displays the long message.
2. If a long message is on the screen and the user requests HELP, ISPF checks to
see if message help is defined.
* If message help is defined, ISPF displays that panel. If the user requests help
from the message help panel, the Help Tutorial panel is displayed.
* If message help is not defined, ISPF checks to see if field-level help is
defined for the field on which the cursor is located.
— If field-level help is defined, ISPF displays that panel. If the user requests
HELP from the field-level help panel, the Help Tutorial panel is displayed.
— If field-level help is not defined, ISPF checks for panel help.
- If panel help is defined, ISPF displays that panel. If the user requests
HELP from the panel help panel, the Help Tutorial panel is displayed.
- If panel help is not defined, ISPF displays the first panel within the
application’s tutorial.

3. When an application panel has been displayed and the user requests HELP,
ISPF checks to see if field-level help is defined for the field on which the cursor
is located.

e If field-level help is defined, ISPF displays that panel. If the user requests
HELP from the field-level help panel, the Help Tutorial panel is displayed.

* If field-level help is not defined, ISPF checks for panel help.

— If panel help is defined, ISPF displays that panel. If the user requests
HELP from the panel help panel, the Help Tutorial panel is displayed.

— If panel help is not defined, ISPF displays the first panel within the
application’s tutorial.

Eigure 76 on page 281 illustrates the panel flow for help according to the ISPF

search sequences.

280 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

..
Application
panel
@ with short
message

User requests HELP

)
Application
panel Application
@ with long panel

message

User requests HELP

ISPF searches

Is
message
help
defined

Is
field-level*
help
defined
?

* ISPF searches for field-level help
for the field on which the cursor is located

Figure 76. Help Panel Flow

message field-level panel
help help help
I — —
User requests User requests
additional help additional help
r Y v
Help Help Help
Tutorial Tutorial Tutorial
~— ~—

Is
panel
help

defined
?

Keys Help Request from an Application Panel

When an application panel is displayed and the user requests KEYSHELP, ISPF
displays the keys help panel (provided that keys help is defined).

If the panel contains a short message, and/or long message and the user requests

KEYSHELP, ISPF displays the keys help panel without following the search

sequence as illustrated in w

Extended Help Request from an Application Panel
When an application panel is displayed and the user requests EXHELD, ISPF

displays the extended help panel (provided that extended help is defined).

If the panel contains a short message, and/or long message and the user requests

EXHELDP, ISPF displays the extended help panel without following the search

sequence as illustrated in

Help Available from a Help Panel

The following list describes the ISPF help facilities available when a help panel or

tutorial panel is displayed.

e If the user requests HELP from any help or tutorial panel, ISPF displays the help

for help panel defined by the .HHELP control variable. If the variable is not

defined, then ISPF displays the Help Tutorial panel.

Chapter 7. ISPF Help and Tutorial Panels

281

e If the user requests EXHELP from any help or tutorial panel (except from the
extended help panel), ISPF displays extended help.

Note: If the user requests EXHELP from the extended help panel, ISPF issues a
message stating that extended help is currently displayed.

e If the user requests KEYSHELP from any help or tutorial panel (except the keys
help panel), ISPF displays keys help.

Note: If the user requests KEYSHELP from the keys help panel, ISPF issues a
message stating that keys help is currently displayed.

* If the help panel contains a reference phrase, and the user requests HELP while
the cursor is positioned on a reference phrase, ISPF displays the reference phrase
help panel defined. When a reference phrase help panel is cancelled, the help
panel from which reference phrase help was requested is redisplayed. All other
help facilities are available from a reference phrase help panel.

Ending Help

When the user requests END or EXIT from any help panel (except the Help
Tutorial panel), ISPF returns to the original application panel. If the user requests
END or EXIT from the Help Tutorial panel, ISPF returns to the previous panel.

If the user requests CANCEL from any help or tutorial panel, ISPF returns to the
previous panel.

ISPF Default Keylist for Help Panels

You can specify a keylist to be associated with a help panel by using the keylist
attribute on the HELP tag (DTL) or by using the)PANEL statement in your panel
definition. If you do not specify a keylist, ISPF uses the keys defined for ISPHELP
to display in the function area of the help panel when it is displayed.

The key settings and forms for ISPHELP are shown in [Cable 14. Refer to the ISPF
User’s Guide for more information on keylists.

Table 16. ISPHELP Key Settings

Key Command Form
F1 HELP Short
F2 SPLIT Long
F3 EXIT Short
F5 EXHELP Short
F6 KEYSHELP Short
F7 UP Long
F8 DOWN Long
F9 SWAP Long
F10 LEFT Long
F11 RIGHT Long
F12 CANCEL Short

282 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

The ISPF Tutorial Panels

A tutorial panel is a special type of panel that is processed by the ISPF tutorial
program. This program invokes the panel display service to display the panel.

A user invokes the ISPF program that displays tutorial panels in four ways:
* As an option from a menu

* Directly or indirectly from any non-tutorial panel by entering the HELP
command or by pressing the function key assigned to the HELP command.

* By selecting a choice from a Help pull-down
¢ Through the use of the TUTOR command

Transfer into and out of the tutorial using the HELP command is transparent (no
action required) to ISPF functions.

ISPF tutorial panels are arranged in a hierarchy. Generally, this hierarchy is a table
of contents, each succeeding level of which contains a more detailed list of topics.
When the tutorial is entered from a menu, the first panel to be displayed is usually
the top of the hierarchy. The name of the first panel is passed as a parameter to the
ISPTUTOR program.

When the tutorial is entered by use of the HELP command, the first panel to be
displayed is a panel within the hierarchy, appropriate to what you were doing
when help was requested.

When viewing the tutorial, you can select topics by entering a selection code or by
simply pressing Enter to view the next topic. On any panel, you can also enter the
following commands:

BACK or B To return to the previously viewed panel

SKIP or S To advance to the next topic
UP or U To display a higher-level list of topics
TOCor T To display the table of contents

INDEX or I To display the tutorial index

Note: If you enter the UP command after viewing a portion of a tutorial
sequentially and if you do not select a new topic from the displayed list,
you can resume the tutorial at the next sequential topic on the list by
entering the NEXT command or by pressing Enter.

You can use the following keys whenever you are in the tutorial:

ENTER To display the next sequential page or scroll a scrollable help panel
HELP To redisplay this page for help information

END To terminate the tutorial

UP To display a higher level list of topics (rather than typing UP)
DOWN To skip to the next topic (rather than typing SKIP)

RIGHT To display the next page (rather than pressing Enter) or to scroll a

scrollable help panel

LEFT To display the previous page (rather than typing BACK) or to
scroll a scrollable help panel

Chapter 7. ISPF Help and Tutorial Panels 283

284

When running under tutorial and trying to scroll past the end of the scrollable
area, a message will be displayed indicating that no more information is available
in the scrollable area. If RIGHT or ENTER is pressed again, ISPF will follow the
normal tutorial flow and display the next help panel if one has been defined. The
same is true when scrolling to the TOP of the scrollable AREA; a message
indicating that no more information is available will be displayed, and if LEFT is
pressed, the previous tutorial panel will be displayed if one has been defined.

Cursor positioning usually defines which scrollable area will be scrolled. However,
when in tutorial, if the cursor is not within a scrollable area, the first area defined

in the)BODY section will be scrolled. The LEFT and RIGHT commands should be
included in any keylist specified for a scrollable help panel.

If you issue the HELP command while viewing a tutorial, ISPF displays a tutorial
panel that contains a summary of commands that are available to the tutorial user.

When you end the tutorial, using the END or RETURN command, the panel from
which you entered the tutorial is displayed again.

The name of the top panel must be specified by dialog variable ZHTOP. The name
of the first index panel must be specified by ZHINDEX. It is recommended that
these two dialog variables be initialized at the beginning of the application to
ensure that the user can always display the tutorial top or index, regardless of how
the tutorial was entered. One way to initialize these variables is to set them from

the E‘E-rimary option menu, as shown in 'Example of a Primary Option Menu” or

The index is optional. It is a collection of panels in which topics are arranged in
alphabetic order. You can jump to the index from any point by using the INDEX
command. The index need not be connected to the main tutorial hierarchy. It can
be a topic that you can select from the main table of contents or other panels. A list
of the last 20 tutorial panels displayed, including the current panel, is maintained
by ISPE. You should issue the TOP or INDEX command instead of the BACK
command if you want to view panels displayed before the last 20 panels.

Each tutorial panel must have a next selection input field. Generally, you should use
the name ZCMD for this field. A tutorial panel should also have a processing
section in which the following variables are set:

ZSEL or SEL
Specifies the name of the next panel to be displayed based on the topic
selected by the user, by translating ZCMD to a panel name. The panel
name can be preceded by an asterisk (*) to indicate a topic that can be
explicitly selected by the user, but which is bypassed if the user presses
Enter to view the next topic.

The maximum number of entries allowed is 100.
If a panel does not have any selectable topics, ZSEL should be omitted.

ZUP or UP
Specifies the name of the parent panel from which this panel was selected.
Generally, ZUP can be omitted since the tutorial program remembers the
sequence of selections that lead to the display of this panel. ZUP is used
only if this panel is the first to be displayed by a user entering the HELP
command, or if it is selected from the tutorial index and the user then
enters the UP command.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

ZCONT or CONT
Specifies the name of the next continuation panel. If there is no
continuation panel, ZCONT should be omitted.

ZIND When set to a value of YES, specifies that a page in the tutorial is an index
page. For example:

)PROC
&ZIND = YES

The ZIND variable is used only on index pages; it should not be set on
other tutorial panels.

Variables SEL, UP, and CONT are provided for compatibility with the previous SPF
product. Use of variable names ZSEL, ZUP, and ZCONT is recommended.

A panel cannot have both a continuation panel and selectable topics. However, the
last panel in a sequence of continuation panels can have selectable topics.

Help/tutorial panels can contain variables so that dialog information, including
information entered by a user, can be displayed on the help panel. Function
variables, as well as shared and profile variables, can be displayed.

w shows a sample hierarchy of tutorial panels. Panels A and B have three
selectable topics each. Panels C and D2 have two selectable topics each. The other
panels have no selectable topics. Panel D1 has a continuation page (D2), and panel
F1 has two continuation pages (F2 and F3).

In w, assuming that panel A is the highest-level table of contents, the
viewer can get to A from any point by issuing the TOC command. A viewer
currently on panel F1, F2, or F3 can return to panel B by issuing the BACK
command. Then, from B, the SKIP command would take the viewer to panel C. If
the user enters the TUTOR command along with a panel identifier parameter, a
specific tutorial panel within the Help hierarchy is displayed. From that point on,
any movement within the hierarchy is the same as if the user had reached the
panel by any other means.

D1

D2

F1

F2

F3

Figure 77. Sample Tutorial Hierarchy

Chapter 7. ISPF Help and Tutorial Panels 285

286

Two sample tutorial panels are shown in Eigure 78 and [Figure 79 on page 287 .

These are assumed to be panels B and F2, respectively, in the hierarchy in

Eigure 77 on page 284.

T 3270 DISPLAY TERMINAL =----mmmmmmmmmmmmman TUTORIAL)

%NEXT SELECTION ===> ZCMD ik
¥
General Information
3270 Key Usage

The IBM 3270 display terminal has several keys which will assist you
in entering information. These are hardware defined keys; they do not
cause a program interruption.

The following topics are presented in sequence,
or can be selected by number:

%1+ Insert and Delete Keys
%2+ Erase EOF (to End-of-Field) Key

The following topic will be presented only if
explicitly selected by number:
+
%3+ New Line and TAB Keys
+

)PROC
&ZSEL = TRANS(&ZCMD 1,E 2,F1 3,*G =,'?")
&ZUP = A

)END

Figure 78. Sample Tutorial Panel Definition (Panel B)

Panel B has three selectable topics. In the processing section, ZCMD is translated to
a panel name (E, F1, or G) corresponding to the selected option, and the result is
stored in ZSEL. If none of the valid options is selected, a question mark (?) is
returned as the translated string, which causes the tutorial program to display an
invalid option message.

Note that option 3 is translated to *G. This indicates that panel G is displayed if the
user selects option 3, but is bypassed if the user repeatedly presses Enter to view
each topic. The order in which topics are presented when Enter is pressed is the
same as the order in which they appear in the TRANS function. If option 3 is
selected, pressing the Enter key does not display the other topics.

In panel B, the name of the parent panel (A) is stored in variable ZUP.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

/'%TUTORIAL ———————————————————— ERASE EOF KEY -=----mmmmmmmmmmee TUTORIAL)
%NEXT SELECTION ===>_Z(CMD +
+

When the erase EOF (erase to end-of-field) key is used, it will appear
to blank out the field. Actually, null characters are used in erasing
to the next attribute byte, thus making it easy to use the insert
mode, which requires null characters.
+
If the erase EOF key is pressed when the cursor is not within an input
field, the keyboard will lock. Press the RESET key to unlock the
keyboard.
+
You can try out the erase EOF key by entering data on line 2, then
moving the cursor back over part or all of the data and pressing the
key.
+
(Continued on next page)
+
)PROC
&ZCONT = F3
)END
& %

Figure 79. Sample Tutorial Panel Definition (Panel F2)

Panel F2 (W) has no selectable topics, but does have a continuation page.
The name of the continuation panel (F3) is stored in variable ZCONT. The name of
the parent panel (B) could have been stored in ZUP, but this was omitted assuming
that F2 cannot be directly entered by use of the HELP command or from the
tutorial index.

If you call ISPTUTOR from an edit macro, be sure to save and restore the
environment at that point. For example:

ISREDIT MACRO

ISPEXEC CONTROL DISPLAY SAVE

ISPEXEC SELECT PGM(ISPTUTOR) PARM(panel-id)
ISPEXEC CONTROL DISPLAY RESTORE

EXIT

Chapter 7. ISPF Help and Tutorial Panels 287

288 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 8. Defining Messages

This chapter describes how to create and change ISPF messages. You can create
messages in two ways:

* Using the existing message definition.

* Using the MSG and MSGMBR tags of the Dialog Tag Language (DTL). Refer to
the ISPF Dialog Tag Language Guide and Reference for more information about
these tags.

ISPF message definitions are stored in a message library and displayed by using
the DISPLAY, TBDISPL, or SETMSG service, written to the ISPF log file by the
LOG service, or copied to variables specified in a GETMSG service request. You
create or change messages by editing directly into the message library. ISPF
interprets the messages during processing. No compile or preprocessing step is
required.

Note: When not in TEST mode, the most recently accessed message definitions are
retained in virtual storage for performance reasons. If you have modified a
message, using TEST mode will ensure that the updated version of the
message will be picked up by ISPF services. See IISPE Test and Tracd

Modes” on page 24 for more information.

Several messages can be within each member of the message library. When using
the PDF editor to create a message file, prevent numbers from appearing in the file
by specifying NUMBER OFEF.

The member name is determined by truncating the message ID after the second
digit of the number.

For example:

Message ID Member Name
G015 G01

ISPE241 ISPE24
XYZ123A XYZ12
ABCDE965 ABCDE96
EMPX214 EMPX21

All messages that have IDs beginning with the characters G01, for example, must

be in member GO1. Eigure 80 on page 290 shows an example of a member in the

message library. This member contains all message IDs that begin with EMPX21.

© Copyright IBM Corp. 1980, 2001

289

EMPX210 'INVALID TYPE OF CHANGE' .HELP=PERS033 .ALARM=YES
'"TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.'

EMPX213 "ENTER FIRST NAME' .HELP=PERS034 .ALARM=YES
"EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.'

EMPX214 "ENTER LAST NAME' .HELP=PERS034 .ALARM=YES
"EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.'

EMPX215 "ENTER HOME ADDRESS' .HELP=PERS035 .ALARM=YES
"EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.'

EMPX216 "AREA CODE INVALID' .ALARM=YES
"AREA CODE &PHA IS NOT DEFINED. PLEASE CHECK THE PHONE BOOK.'

EMPX217 '&EMPSER ADDED'
"EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE'

EMPX218 '&EMPSER UPDATED'
'"RECORDS FOR &LNAME, &FNAME &I UPDATED'

EMPX219 '&EMPSER DELETED'
'RECORDS FOR &LNAME, &FNAME &I DELETED'

Figure 80. Sample Messages

How to Define a Message

290

Messages generally should appear in collating sequence by message ID. Each
message within the library consists of two required lines and (optionally)
additional long message lines. The additional lines can contain up to 512 bytes of
long message text. %%E' illustrates the syntax for defining messages.

Line 1:

msgid ['short message'][.HELP=panel|=] [.ALARM=YES|NO]
[NOKANA | KANA] [.WINDOW=RESP | NORESP | LRESP| LNORESP]
[.TYPE=NOTIFY|WARNING|ACTION|CRITICAL]

Line 2:

'Tong message' [+]

Additional long message text Tines — optional

Line 3:
['Tong message' [+]]
Line 4:
['Tong message' [+]]
Line n:
['Tong message' 1

Figure 81. Example Syntax for Defining Messages

msgid
Required. Each message is referred to by a message identifier (ID). A message
ID can be four to eight characters long. It is defined as follows:
 Prefix: one to five alphabetic characters (A-Z, #, $, or @)
* Number: three numeric characters (0-9)
* Suffix (optional): one alphabetic character.

If the prefix is five characters long, the suffix must be omitted so that the total
length does not exceed eight characters. Use the message ID suffix if more than
10 messages are to be included in one member.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

short message
Optional. If a short message is specified on an ISPF panel, it is displayed first
(before the long message). Its maximum length is 24 bytes. The short message
is displayed in a pop-up window if the text is longer than will fit in the short
message area or if you defined a message window using the .WINDOW
keyword for the message. Otherwise, the short messages are right-justified and
displayed, with a high intensity attribute, either:
* At the right end of the first line on the screen, if an action bar is not defined
At the right end of the line following the action bar

If the user enters the HELP command, the long message is displayed, with a
high intensity attribute. If the user enters the HELP command again, tutorial
mode is entered.

The location of the short and long messages in a user-designed panel is
specified by the SMSG and LMSG keywords. These keywords are defined

under ['Defining the Body Section” on page 207,

When messages are written to the ISPF log file, both the short message, if any,
and the long message are written in the same output line. The short message
comes first, followed by the long message.

Note: For long or short messages in pop-up windows, if the message
originates from panel processing, such as a verification error message,
the message pop-up window is placed adjacent to the field that is the
object of the validation.

HELP=panel | *
Optional. (Can be abbreviated to .H) If the user enters tutorial mode, the panel
name specified by .HELP is the first tutorial page displayed. If .HELP=* is
specified, the first tutorial page is the one specified in the panel definition, that
is, the panel on which this message is being displayed. The default is *.

NOKANA | KANA
Optional. The NOKANA keyword allows messages to contain lowercase
characters, and still display correctly on a Katakana terminal. Because
hexadecimal codes for some lowercase characters overlap those of some
Katakana characters, they would display as meaningless characters on a
Katakana terminal. If the NOKANA keyword is present in a message
definition, ISPF translates any lowercase message characters to uppercase
before displaying the message on a Katakana terminal.

In summary, if the terminal is Katakana, and:

* KANA is specified, all characters are left as is.

* NOKANA is specified, lowercase characters are translated to uppercase.
¢ If neither KANA nor NOKANA is specified, all characters are left as is.

If the terminal is not Katakana, and:

¢ KANA is specified, lowercase characters are displayed as periods

* NOKANA is specified, all characters are left as is.

¢ If neither KANA nor NOKANA is specified, all characters are left as is.

Notes:

1. On non-Katakana terminals, the KANA keyword can be used to display
overlapping Katakana characters as periods rather than as meaningless
lowercase characters.

2. On Katakana terminals, the NOKANA keyword is necessary in messages
containing lowercase English characters.

Chapter 8. Defining Messages 291

292

3. See [‘Chapter 10. Extended Code Page Support” on page 311 for the
discussion of the treatment of the KANA or NOKANA keywords if a
CCSID is specified.

ALARM=YESINO

Optional. (Can be abbreviated to .A) If .ALARM=YES is specified, the audible
alarm sounds when the message displays. If . ALARM=NO is specified, the
alarm does not sound unless .ALARM is set to YES in the panel definition. The
default is NO.

WINDOW=RESP | NORESP | LRESP | LNORESP

Optional. (Can be abbreviated to .W) The WINDOW keyword tells ISPF to
display the message in a message pop-up window.

.WINDOW=RESP (R is a valid abbreviation for RESP) requests ISPF to display
both long and short messages in a message pop-up window that requires the
user to press Enter before data can be entered into the underlying panel. The
user cannot enter data or interact with the underlying panel until Enter (or
some other attention key) is pressed.

WINDOW=NORESP (N is a valid abbreviation for NORESP) requests ISPF to
display both long and short messages in a message pop-up window that does
not require direct user response. The user can enter data into the underlying
panel while this message is being displayed.

WINDOW=LRESP (LR is a valid abbreviation for LRESP) requests ISPF to
display only long messages in a message pop-up window that requires the
user to press Enter before data can be entered into the underlying panel. The
user cannot enter data or interact with the underlying panel until Enter (or
some other attention key) is pressed.

WINDOW=LNORESP (LN is a valid abbreviation for LNORESP) requests ISPF
to display only long messages in a message pop-up window that does not
require direct user response. The user can enter data into the underlying panel
while this message is being displayed.

The MSGLOC parameter on the DISPLAY, TBDISPL, and SETMSG services
controls the placement of the message pop-up window. For messages that
originate from panel processing, such as a verification error message, the
message pop-up window is placed adjacent to the field which is the object of
the validation. The window placement will be such that it does not overlay the
object field, if possible. If no correlation can be made between the validation
and a field (such as when the variable being validated is not a panel field
name), the message pop-up window is displayed at the bottom of the logical
screen or below the active pop-up window, if one exists. See ISPF User’s Guide
for a complete description of the MSGLOC parameter.

.TYPE=NOTIFY | WARNING | ACTION | CRITICAL

Optional. (Can be abbreviated to .T) The .TYPE keyword in the message
definition identifies the particular type of message. There are four types of
messages, NOTIFY, WARNING, ACTION, and CRITICAL. N, W, A, and C are
valid abbreviations.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

[able 12 summarizes the characteristics of the different types of messages.

Table 17. Message Characteristics

Type Color Intensity Placement Response Alarm
Message area
NOTIFY White High or pop-up Optional Off
window

Message area
WARNING Yellow High or pop-up Optional On
window

Message area

ACTION Red High or pop-up Optional On
window

CRITICAL Red High Pop-up Required On
window

The .TYPE keyword overrides any .ALARM value that can be specified and a
.TYPE=CRITICAL message is always displayed as though .WINDOW=RESP
was specified. The color and highlighting characteristics defined above apply
to messages displayed in the default short/long location and a pop-up
message window. The dialog application controls the field attributes for
alternate message location fields.

long message
Required. If a short message is not specified, the long message is automatically
displayed first, with a high intensity attribute, in the long message area or in a
message pop-up window. The long message is displayed in a pop-up window
if the text is longer than will fit in the long message area, if you defined a
message window using the 'WINDOW keyword for the message, or if you
have selected this option on the Settings panel.

The location of the short and long messages in a user-designed panel is
specified by the SMSG and LMSG keywords. These keywords are defined

under [Defining the Body Section” on page 207,

The maximum length of the long message text is 512 bytes. If the message text
is greater than 512 bytes, it will be truncated. Messages greater than 78 bytes
require multiple long message lines. The continuation of the long message text
into additional lines is indicated by one or more spaces following the ending
quote () followed by a plus (+) sign. For example:

ISPX001 'short message text'

'Long message text' +

' continued over ' +

'multiple lines. The maximum length is ' +
'512 bytes.'

For the best results, use the fewest number of message lines possible.

ISPX001 'short message text'
'Long message text continued over multiple lines. The maximum' +
' Tength is 512 bytes.'

Consecutive SOSI characters resulting from multiple lines of DBCS data are
automatically removed. For example,

"Long messageSDBS' +
0 I
'SCSSdata.'

Chapter 8. Defining Messages 293

0 I

Result: Long messageSDBCSSdata.
0 I

The ending SI in the first record and the beginning SO in the second record are
automatically removed.

When messages are written to the ISPF log file, both the short message, if any,
and the long message are written in the same output line. The short message
comes first, followed by the long message.

The long message text will be written to multiple records if the text is greater
than 78 characters.

Existing dialogs which have VDEFINEd the system variable ZERRLM as 78
characters should be updated to VDEFINE this variable as 512 characters.

Note: For long or short messages in pop-up windows, if the message
originates from panel processing, such as a verification error message,
the message pop-up window is placed adjacent to the field which is the
object of the validation.

Message Display Variations

The following tables show various message display situations and the effect of the
.TYPE keyword and the PANEL DISPLAY CUA MODE field on the color and
highlighting of the message text. The variations are dependent on whether or not
you used the Dialog Tag Language (DTL) or the panel definition statements to
define your panels.

Note: If you are running in GUI mode, messages that would appear in a pop-up
window in non-GUI mode will be displayed in a message box. The message
box will include the appropriate icon as defined by CUA guidelines:

* .TYPE=NOTIFY produces an i in a circle, the international symbol for
information

¢ .TYPE=WARNING produces an exclamation point (!)

¢ .TYPE=ACTION or .TYPE=CRITICAL produces a red circle with a
diagonal line across it

If your dialog application panels are Eenerated using the DTL, the dialog manager
displays the messages as shown in .

Table 18. Message Display Using DTL

Message Definition Text Intensity
TYPE=NOTIFY .ALARM=YESINO White High
.TYPE=WARNING .ALARM=YES INO Yellow High
.TYPE=ACTION .ALARM=YESINO Red High
.TYPE=CRITICAL .ALARM=YES INO Red High
.TYPE not specified .ALARM=NO White High
.TYPE not specified . ALARM=YES Yellow High

294 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

If your application panels are generated from the panel definition statements and
you use the default messaFe placement, the dialog manager displays the messages

as documented in

Table 19. Message Display Using Panel Definition Statements

Message Definition Text Intensity
.TYPE=NOTIFY .ALARM=YES | NO White High
.TYPE=WARNING .ALARM=YES I NO Yellow High
.TYPE=ACTION .ALARM=YES | NO Red High
.TYPE=CRITICAL .ALARM=YES | NO Red High
.TYPE not specified . ALARM=NO CUA . .
mode=YES White High
.TYPE not specified . ALARM=YES CUA .
mode=YES Yellow High
.TYPE not specified . ALARM=NO CUA . .
mode=NO White High
.TYPE not specified . ALARM=YES CUA . .
mode=NO White High

If you define your panels using the panel definition statements and you use an
alternate message placement, the dialog (using the field attributes) controls the
message text color and highlighting.

Messages Tagged with CCSID

An ISPF message can be defined with .CCSID=xxxxx where xxxxx is the CCSID of
the EXTENDED CODE PAGE as defined by Character Data Representation

Architecture. Refer to I'Supported CCSIDs” on page 314 for which CCSIDs are

supported.

Panels or messages tagged with the CCSID keyword invoke the TRANS service.
The to CCSID is the value in ZTERMCID. This value is filled in during ISPF
initialization as the result of the terminal query done by ISPFE. The from CCSID is
the CCSID entered following the CCSID keyword.

If the CCSID keyword is used, the characters in the message are translated to the
equivalent characters in the terminal code page for display. This translation occurs
only if the terminal has returned information to allow ISPF to determine its CCSID
and only if the code page indicated by the CCSID is different from the code page
of the terminal.

Note: The same CCSID is used for all messages within a message member.
Therefore, this keyword should be in the first record and start in the first
column of the message member. If the .CCSID keyword is not in the first
record or does not start in the first column of the first record, it is ignored
and character translation does not occur.

.CCSID=xxxxx

ISPX001 'short message text'

"Long message text' +

" continued over ' +

'multiple Tines. The maximum length is ' +
'512 bytes.'

Chapter 8. Defining Messages 295

All characters in the message member which are not short or long message text
must be in the Syntactic Character Set:

e A-Z

° a-z

* 0-9

C +<=>%&*"’
° ()/_'-/:;?

The beginning and ending inhibited character tables are enhanced to include
characters from the extended code pages for the supported Asian Pacific languages
in formatting message text. The CCSID of the message is used to determine which
tables to use. If no CCSID is specified, the session language ID and terminal type
determine the tables used. See L z

page 311l and 'Message Pop-TIp Text Formatting’l.

Modeless Message Pop-Ups

ISPF allows you to cancel a modeless message pop-up by positioning the cursor
within the bounds of the message pop-up and requesting CANCEL or ENTER.
This allows you to remove the message pop-up without submitting the underlying
panel for processing.

For the cursor to be within the bounds of the message pop-up, it must be inside
the window frame of the message. Placing the cursor on the message window
frame does not result in the message window being cancelled. Note that
asynchronous command processing is not suspended when the cursor is placed
inside a message window. Therefore, commands such as PRINT and SPLIT are
executed when typed on the command line and Enter pressed, even if the cursor is
placed inside a modeless message pop-up window.

The HELP command will not display message help for a message window that has
been cancelled.

Message Pop-Up Text Formatting

296

The message text is retrieved from the message member. If it is more than one line
(that is, if ISPF finds at least one blank and a plus sign following the closing quote)
then the lines are concatenated together, including blanks within or at the end of
the text. Trailing blanks are stripped from any variable values before the values are
substituted into the text string.

The width of the message pop-up window is determined based on the location
where the window will be placed. If the message is displayed as a result of a panel
verification error, the message pop-up is displayed relative to the field in error. If
the MSGLOC parameter is specified on the DISPLAY or SETMSG service, the
message pop-up is displayed relative to the specified field name. If the MSGLOC
parameter is not specified, the message pop-up will be displayed at the bottom of
the logical screen or below the active ADDPOP pop-up window;, if one exists.

The width of the window will be the width from this determined location to the
right edge of the screen. Note that this width will vary based on the screen size the
user is running with.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

ISPF determines if the message text is to be formatted according to English rules or
Asian rules based on the type of data in the message text, MIXED or EBCDIC,
together with the message CCSID or the current ISPF session language variable,
ZLANG.

If the data contains double-byte characters and the message CCSID is 00930, 00933,
00935, 00937, or 00939, the Japanese (Katakana), Korean, Simplified Chinese,
Traditional Chinese, or Japanese (Latin) text formatting rules are used, respectively.
If the data contains double-byte characters and the message does not have a
CCSID or the CCSID is not 00930, 00933, 00935, 00937, or 00939 and the ZLANG
value is JAPANESE, CHINESET, CHINESES, or KOREAN, the Japanese,
Traditional Chinese, Simplified Chinese, or Korean text formatting rules are used,
respectively. If the data contains double-byte characters and the message does not
have a CCSID, or if the message CCSID is not 00930, 00933, 00935, 00937, or 00939,
or if the ZLANG is not JAPANESE, CHINESET, CHINESES, or KOREAN, the
Japanese text formatting rules are used by default.

If the data is all single-byte data and there is no CCSID for the message, ISPF
determines if the application is running on a Japanese Katakana terminal and if the
NOKANA keyword was specified on the message definition. If so, ISPF uses the
English formatting rules. If NOKANA was not specified, ISPF uses the Japanese
Katakana formatting rules. If the application is not running on a Katakana terminal
and there is no CCSID for the message, ISPF uses the English formatting rules.

English Rules for Message Text Formatting

Message text exceeding the width of the message window is wrapped to the next
line. The text is split at blanks only. If a word is longer than the message window
width, the window is expanded to the width of this word. However, if a word
exceeds the maximum window size (screen width minus 3), the word will be split
and continued on the next line. Once the message formatting is complete, the
message pop-up window width will be decreased to the length of the longest line,
excluding trailing blanks.

Asian Rules for Message Text Formatting

Some characters should not be placed at the beginning of a line, and some should
not be placed at the end of a line. These beginning-and-ending inhibited characters
are different among the languages, yet the required process is the same. Thus, ISPF
uses the same text formatting process for the Asian languages, but it uses a
different beginning-and-ending inhibited character table for each language. The
CCSID of the message is used to determine which tables to use. If no CCSID is
specified, the session language ID and terminal type determine the tables used. See

The message text is first split into words. A SBCS word is delimited by blanks, or
SO/SI characters. Then any beginning inhibitors are stripped from the beginning of
the word and treated as separate words, and any ending inhibitors are stripped
from the end of the word and treated as separate words.

Adjoining DBCS alphanumeric characters (that is, Ward 42 characters) are treated
as one DBCS word. Then any beginning inhibitors are stripped from the beginning
of the word and treated as separate words, and any ending inhibitors are stripped
from the end of the word and treated as separate words. All other non-Ward 42
double-byte characters are treated as separate DBCS words.

Chapter 8. Defining Messages 297

298

If a word is longer than the message window width, the window is expanded to
the width of this word. However, if a word exceeds the maximum window size
(screen width = 3), the word will be split and continued on the next line. If the text
consists of mixed data and does not fit in one line within the specified width, the
first position will always be reserved for an SO character (if first word is
double-byte) or for a blank (if the first word is single byte). This will allow the text
to be aligned properly.

Words that exceed the width of the message window are wrapped to the next line
according to following rules:

oo CE_1CE
CB CB+1 ...

CE_1 CE CB | CB+1| Process

any B,X B X,E Backward

E E X,B | X,E Backward
X,B E any | any Forward
Xx,B - X - B - B Forward
__ any other ___ No process
where:
CE-1 and CE Last two words that fit on line
CB and CB+1 First two words on next line
E Ending inhibitor
B Beginning inhibitor
X Neither
Forward Move CE to next line
Backward Move CB to previous line
No process Split as is.

Note: If words CE or CB are single-byte words and are more than one character,
or if CE or CB are double-byte words and are more than one double-byte
character, no special processing is used; the line is split as is.

SBCS and DBCS blanks that end or begin a line will be deleted.

Substitutable Parameters in Messages

A substitutable parameter, a dialog variable name preceded by an ampersand (&),
can appear anywhere within the short and long message text. For example:

'Volume &VOL not mounted'

Substitutable parameters can also be used to specify the value of .HELP or
ALARM, as follows:

'Volume &VOL not mounted' .HELP = &H .ALARM = &A

where variable H must contain a panel name or single asterisk, and variable A
must contain YES or NO. Substitutable parameters can also be used to specify the
value of .TYPE and .WINDOW.

Substitutable parameters in messages are normally replaced with values
immediately before the message displays. If the message is specified for display by

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

using the SETMSG service, substitutable parameters are replaced during SETMSG
processing. When the GETMSG service is invoked, substitutable parameters are
replaced at the time of the GETMSG call. After substitution of the variables, the
short message is truncated to 24 characters and the long message is truncated to
512 characters.

Syntax Rules for Consistent Message Definition

The following rules apply to the syntax of messages as they appear in the message

hbrary (Eigure 80 on page 290):

The message ID must begin in column 1 of the first line, and the long message
must begin in column 1 of the second line. For readability, one or more blank
lines can separate the two-line message specifications within the member.

¢ Comments can precede or follow a two-line message specified within a member.
A comment begins with the characters /* starting in column one.

* In the first line, the fields must be separated by at least one blank. One or more
blanks can optionally occur on either side of an equal sign (=).

* The short message, if specified, and the long message must each be enclosed in
single quotes ('). If the short message is omitted, the enclosing single quotes are
also omitted.

* Within the short or long message text, any non-alphanumeric character can
terminate a variable name. For example:

"Enter &X, &Y, or &Z'

where a comma terminates the variable names X and Y The name Z is delimited
by the single quote that marks the end of the message.

* A period (.) at the end of a variable name has a special meaning. It causes
concatenation with the character string following the variable. For example, if
the value of variable V is ABC, the

'&V.DEF' yields 'ABCDEF'

* A single ampersand followed by a blank is interpreted as a literal ampersand
character, not the beginning of a substitutable variable. An ampersand followed
by a nonblank is interpreted as the beginning of a substitutable variable.

* A double ampersand can be used to produce a character string starting with an
ampersand. The double character rule also applies to single quotes within the
delimiting single quotes required for the short and long message text, and to a
period, if it immediately follows a variable name. For example:

&& yields &
"' yields ' within delimiting single quotes
yields . immediately following a variable name.

DBCS-Related Variables in Messages

The following rules apply to substituting DBCS related variables in messages.
These rules also apply to file skeletons and file-tailoring operations.

e If the variable contains MIX format data, each DBCS subfield must be enclosed
with shift-out and shift-in characters.
Example:

eeee [DBDBDBDBDB] eee [DBDBDB]

ee... represents a field of EBCDIC characters
DBDB... represents a field of DBCS characters

-[1- represent shift-out and shift-in characters.

Chapter 8. Defining Messages 299

* If the variable contains DBCS format data only, the variable must be preceded
by the ZE system variable, without an intervening blank.

Example:
...text...&ZE&DBCSVAR. .text...

e If the variable contains EBCDIC format data and is to be converted to the
corresponding DBCS format data before substitution, the variable must be
preceded by the ZC system variable, without an intervening blank.

Example:
...text...&ZC&EBCSVAR. .text...

The ZC and ZE system variables can only be used for the two purposes described
above.

300 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 9. Defining File-Tailoring Skeletons

ISPF skeleton definitions are stored in a skeleton library and accessed through the
ISPF file-tailoring services. You create or change skeletons by editing directly into
the skeleton library. ISPF interprets the skeletons during execution. No compile or
preprocessing step is required.

The description below of skeleton formats applies only to new format skeletons
used with ISPF file-tailoring services. There are two types of records that can
appear in the skeleton file:

Data records
A continuous stream of intermixed text, variables, and control characters
that are processed to create an output record.

Control statements
Control the file-tailoring process. Control statements start with a right
parenthesis in column 1. Records containing a) in column 1 and a blank
in column 2 are interpreted as data records. Records containing a) in
column 1 and a nonblank character in column 2, are interpreted as control
statements. A)DEFAULT control statement can be used for assigning
different special characters for syntactical purposes. The available control
statements are:

-)BLANK
.«)CM
« YDEFAULT
)DOT
)ENDSEL
)ENDDOT
- IM
)SEL
)SET
)TB
)TBA

Considerations for Data Records

Input records can have a maximum length of 255 bytes. For fixed-length records,
the last eight character positions are considered to be a sequence number. The
character preceding the last eight characters is considered to be the last input
column. Variable-length input records are scanned up to the end of the record.

If variable substitution results in an output record larger than the logical record
length of the output file, file tailoring terminates and a message is displayed.

Any blank data records in the input data are deleted from file-tailoring output.
However, the) BLANK control statement can be used to produce blank lines in the

output file.

The following characters have special meanings:

© Copyright IBM Corp. 1980, 2001 301

302

Right Parenthesis—)
Defines the following:

* The start of a control statement when placed in column 1 and followed
by a nonblank character in column 2.

* The start of a data record when placed in column 1 and followed by a
blank in column 2.

Question Mark—?
Indicates a continuation record when placed in the last input column of the
record that is to be continued. The question mark is used as a continuation
character when more than one input record maps to a single output record.
If any character other than a question mark appears in the last input
column of an input record, it is copied to that column of the output record.
Continuation is not permitted for variable length input records.

The following control characters also have special meaning:

Ampersand (&)
Indicates the start of a variable name. The value of the corresponding
dialog variable is substituted in the output record. A value of all blanks is
treated as null. Blank g < (+ | & ! *);~-/, % _>:’ =" implicitly
delimit the end of a variable name.

Period (.)
Causes the value of the variable to be concatenated with the character
string following the period when used at the end of a variable name. For
example, if variable V has the value ABC, then:

"&V.DEF" yields "ABCDEF"

Exclamation point (!)
Serves as the default tab character for the)TB and the)TBA control
statements. The file-tailoring tabbing function works either similarly to that
of a typewriter tabbing operation, or you can specify in the)TB syntax that
tabbing is not to take place if a tab stop is sensed at the same record
position as the tab character.

Less-than (<), vertical bar (1), and greater-than (>)
Specify, respectively, the beginning, middle, and end of a conditional
substitution string. For example:

<stringl|string2>

where stringl must contain at least one variable name. string2 can be null.
If the first variable in stringl is not null, stringl is substituted in the output
record. If the first variable in stringl is null, string2 is substituted in the
output record.

Example:

An input skeleton contains:

)SET 1 = &Z
)SET J = VALUE_OF J
)SET K = VALUE_OF K

FIRST CONDITIONAL SUBSTITUTION RESULT: <&J|&K>;
SECOND CONDITIONAL SUBSTITUTION RESULT: <&I|&J>;

After processing, the file-tailoring output file contains:

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

FIRST CONDITIONAL SUBSTITUTION RESULT: VALUE_OF J
SECOND CONDITIONAL SUBSTITUTION RESULT: VALUE_OF_J

Two consecutive control characters
Two consecutive control characters in the input record result in one control
character being placed in the output record:
&& yields &
Il yields !
<< yijelds <
[| yields |
>> yields >

yields . immediately following a variable name
Seven characters,), &, ?, !, <, |, and >, can be overridden with the)DEFAULT
control statement. If those characters are overridden, the specified characters are

substituted in the list above.

Note: File tailoring treats an ampersand-blank combination in the input record as
an invalid variable name.

Considerations for Control Statements

Control statements cannot be continued to a second line. The maximum length of a
control statement is determined by the record length of the skeleton.

The general format of a control statement, which must begin in column 1, is:
Jcontrol-word parameterl parameter2 ... parameter3l

where each parameter represents a name, value, operator, or keyword.
All control words must be entered in uppercase.

The parameters must be separated by one or more blanks, and cannot contain
embedded blanks. A parameter can be coded as:

* A character string

* A dialog variable name, preceded by an ampersand

* A concatenation of variable names and character strings

The current value of each variable is substituted before the control statement is
evaluated. The rules for delimiting a variable name and for the use of ampersands,
periods, double ampersands, and double periods are the same as for data records,
described above.

The following sections describe the specific control statements:
)IM skel-name [NT] [OPT]

The specified skeleton is imbedded at the point where the)IM statement is
encountered. Up to three levels of imbedding are permitted.

The optional NT parameter indicates that no tailoring is to be performed on the
imbedded skeleton. Since the NT parameter causes the data to be imbedded as it
is, without any control character or control statement processing, using the NT
option improves performance.

Chapter 9. Defining File-Tailoring Skeletons 303

304

The optional OPT parameter indicates that the skeleton is not required to be
present in the skeleton library. If OPT is coded and the skeleton is not present, no
error indication is given, and the record is ignored. If OPT is not coded, and the
skeleton is not present, a severe error occurs.

)DEFAULT abcdefg

The seven characters represented by abcdefg override the use of the), &, ?, !, <, |,
and > characters, respectively. Exactly seven characters must be specified.

If you are using a non-U.S. keyboard, refer to L

tar..AP.LlEXl.and.Ka.takanaLm:_pa.ge_BZEl for text keyboard character translations.

The)DEFAULT statement takes effect immediately when it is encountered. It
remains in effect until the end of FTINCL processing, or until another)DEFAULT
statement is encountered. If the)DEFAULT statement is used to change defaults
during an imbed, it is only in effect for that imbed level. It does not apply to
deeper or previous imbed levels. The DEFAULTS will not be in effect for any
skeletons that are imbedded but will be in effect for any data in the skeleton after
the)IM.

Example 1: This example demonstrates that defaults changed using)DEF do not
take effect in imbedded skeletons.

An FTINCL of the following skeleton, which changes the variable name control
character, &,; to the o sign:

JDEFAULT)e?!<|>

)SET A = USERNAME

A: oA

)IM SKEL2

A: oA

imbeds SKEL?2 that contains:

AA: @A
AA: &A

and results in the following data in the output data set:
A: USERNAME
AA: oA
AA: USERNAME
A: USERNAME

Example 2: This example demonstrates that defaults changed in an imbedded
skeleton are not passed back to the skeleton doing the)IMBED.

An FTINCL of the following skeleton:
)SET A = USERNAME
A: oA
)IM SKEL3
A: oA

imbeds SKEL3 which changes the variable name control character & to the o sign:

JDEFAULT)o?!<|>
AA: oA
AA: &A

and results in the following data in the output data set:

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

A: oA
AA: USERNAME
AA: B&A
A: oA

Example 3: The following example demonstrates how to use the NT parameter to
prevent tailoring from occurring when imbedding a file. Using NT eliminates
having to change defaults in the imbedded skeleton when it contains default
control characters.

An FTINCL of the following skeleton, which imbeds a skeleton with the NT
parameter:

)SET A = LBL1

&A:

)IM SKEL4 NT
GO TO &A

imbeds SKEL4 that contains:

IF (8A < 0) | (&A > 10) THEN
8A = 0
ELSE

and results in the following data in the output data set:

LBL1:
IF (8A < 0) | (8A > 10) THEN
&8A =0
ELSE
GO TO LBL1
)TB valuel ... valuelé6 (standard tabbing)
)TB valuellA] ... valuel6[A] (alternate tabbing—designated positions)
)TBA valuel ... valuel6 (alternate tabbing-all positions)

An exclamation point (!) is used as the default tab character for the)TB control
statement. It tabs the output record to the next tab stop and fills the intervening
spaces with blanks. The next character following an exclamation point in the input
record is put at the tab stop location in the output record. Up to 16 tab stops can
be specified. A tab stop specifies a tab position in the output record, and must be
in the range 1-255. The default is one tab stop at location 255.

When you use the standard tabbing syntax,)TB valuel ... valuel6, and the tab stop
value equals the current output position, the tabbing skips to the next tab stop
value that is greater than the current output position. The input character
following the tab character is then inserted into the position skipped to in the
output record.

When you use alternate tabbing syntax, specified with an A’ in the)TB tabbing
syntax, and the tab stop value equals the current output position, the input
character following the tab character is inserted into the current position in the
output record. This allows you to write to the current position of the output record
if a tab character in the input record is encountered at the same time as a tab stop
is encountered in the output record.

The way you specify alternate tabbing syntax on the)TB control statement
determines whether only designated or all tab stop values are affected, even if the
tab stop value equals the current position in the output record when a tab
character is encountered in the input record. If you specify:

Chapter 9. Defining File-Tailoring Skeletons 305

306

)TB valuelA ... valuel6A

only the tab stop values to which the character A is appended selectively cause
tabbing to stop in any of those positions. If you specify:

)TBA valuel ... valuelb

any tab stop value that equals the current position in the output record when a tab
character is encountered in the input record causes tabbing to stop.

Be sure the character that you append for alternate tabbing is an uppercase A.
Appending an A to the)TB control word ()TBA) has the same effect as appending
an A to all individual tab stop values. When you use the)TBA control word,
appending an A to an individual tab stop value has no additional effect.

Example 1: This example uses the standard tabbing syntax —)TB valuel ... valuel6.

An input skeleton file contains:

)TB 5 10 20
IABCDE!F

After processing, the file-tailoring output record contains:
Positions 1-4 contain the blanks inserted by the first tab operation.
Positions 5-9 contain ABCDE. Standard tabbing occurs between E and F
because tab stop 10 is at the same (not greater than) position of the output
record at which the tab character is encountered in the input record.
Positions 10-20 contain blanks inserted by the second tab operation.
Position 20 contains F.

Example 2: This example uses alternate tabbing syntax for designated tab positions
—)TB valuel[A]...valuel6[A].

An input skeleton file contains:

)TB 5 10A 20
'ABCDE!F

After processing, the file-tailoring output record contains:
Positions 1-4 contain the blanks inserted by the first tab operation.
Positions 5-10 contain ABCDEF. F immediately follows E because alternate
tabbing is specified for tab position 10. This allows tabbing to stop in the
current output record position (10) when the tab character was encountered in
the input record.

Example 3: This example uses the alternate tabbing syntax for all tab
positions—)TBA valuel ... valuel6.

An input skeleton file contains:

)TBA 3 6 10
!ABC!DEF!GH

After processing, the file-tailoring output record contains:
Positions 1-2 contain the blanks inserted by the first tab operation.
Positions 3-5 contain ABC. D immediately follows C because alternate tabbing
is specified and a tab stop is set at the current output position (6).
Positions 6-8 contain DEF.
Position 9 contains a blank inserted by normal tabbing.
Positions 10-11 contain GH.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

)BLANK [number]

The specified number of blank lines are placed in the output file at the point where
the) BLANK statement is encountered. If the number parameter is omitted, the
default value is 1. The number parameter can be specified as a symbolic variable.

Examples:
) BLANK

)BLANK &SPACER

The first example inserts a single blank line into the output file. In the second
example, the number of blank lines inserted into the output file is equal to the
current value of the variable SPACER.

)SEL relational-expression)ENDSEL

The relational expression is evaluated for a true or false condition. If the condition
is true, the skeleton input records between the)SEL and the corresponding
JENDSEL are processed. If the condition is false, these records are skipped. Up to
eight levels of)SEL nesting are permitted. The list of records must end with an
)ENDSEL statement.

Any of the other control statements can be used between the)SEL and the
JENDSEL control statements. For example, if you want to write information from a
table only if variable ABC is set to the name of that table, specify:
)SEL &ABC='TABNAME'
)DOT TABNAME
&FNAME &LNAME
)ENDDOT
)ENDSEL

The relational expression consists of a simple comparison of the form:
valuel operator value2

or a combination of up to eight simple comparisons joined by connectors. The
system variable Z can be used to represent a null or blank value.

The allowable operators are:

EQ or = LE or <=
NE or -= GE or >=
GT or > NG or —>
LT or < NL or =<

The allowable connectors are | (OR) and && (AND). ISPF evaluates connected
expressions from left to right and evaluates the connectors with equal priority.

Examples:

)SEL &COND = YES

JSEL &TEST1 -= &Z | &ABC =5
)SEL &TEST1 -= &Z && &ABC = 5

)DOT table-name)ENDDOT

Note: The)DOT command parameter table-name must be in uppercase for use with
ISPF table services.

Chapter 9. Defining File-Tailoring Skeletons 307

308

The skeleton input records between the)DOT and the corresponding)ENDDOT
are iteratively processed, once for each row in the named table, beginning with the
first row. At the start of each iteration, the contents of the current table row are
stored into the corresponding dialog variables. Those values can then be used as
parameters in control statements or substituted into data records. Up to four levels
of)DOT nesting are permitted. The same table cannot be processed recursively.
The list of records must end with the)ENDDOT statement.

Any of the other control statements can be used between the)DOT and the
JENDDOT control statements. For example, if you want to take information from
table ABC, and write any blank table row as a blank line, specify:
)DOT ABC
)SEL &LNAME=&Z
)BLANK 1
)ENDSEL
&FNAME &LNAME
) ENDDOT

If the table was already open, it remains open after file tailoring with the CRP
positioned at TOP. If it was not open, it is opened automatically and then closed
upon completion of file tailoring.

)SET variable = expression
)SET allows a value to be assigned to a dialog variable. The variable name should
not be preceded by an ampersand, unless the variable name is itself stored as a

variable. A blank is required between the variable and the equal sign and between
the equal sign and the expression. The expression can be specified as either:

valuel
or
valuel operator value2 operator ... valuelb

where operator can be a plus sign (+) or a minus sign (-).
To assign a null value to a dialog variable, use the system variable &Z
Example:

An input skeleton file contains:

)SET A = 1

)SET B = 2

)SET C = &A + &B
)SET D = &Z

A is &A, B is &B, C is &C, D is &D

The resulting output file contains:
Ais 1, Bis 2, Cis 3, D is

)CM comment

The statement is treated as a comment. No tailoring is performed, and the record is
not placed in the output file. The)N comment statement of Program Development
Facility edit models is not a valid control statement for file tailoring. The control
statement terminates file tailoring.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Sample Skeleton File

Figure 82 shows a sample skeleton file. The sample skeleton refers to several dialog
variables (for example, ASMPARMS, ASMIN, and MEMBER). It also illustrates use
of select statements) SEL and)ENDSEL to conditionally include records. The first
part of the example has nested selects to include concatenated macro libraries if
the library names have been specified by the user, that is, if variables ASMMAC1
and ASMMAC2 are not equal to the null variable Z.

In the second part of the example, select statements are used to conditionally
execute a load-and-go step. An imbed statement,) IM, is used to bring in a separate
skeleton for the load-and-go step.

//ASM EXEC PGM=IFOX00,REGION=128K,

// PARM= (&ASMPARMS)

//SYSIN DD DSN=&ASMIN(&MEMBER) ,DISP=SHR
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
)SEL &ASMMACL -= &Z

// DD DSN=RASMMAC1,DISP=SHR
)SEL &ASMMAC2 -= &Z

/1l DD DSN=RASMMAC2,DISP=SHR
) ENDSEL

YENDSEL

//SYSUTL DD UNIT=SYSDA,SPACE=(CYL, (5,2))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL, (2,1))

//SYSPRINT DD SYSOUT=(&ASMPRT)

)CM IF USER SPECIFIED "GO", WRITE OUTPUT IN TEMP DATA SET
)CM THEN IMBED "LINK AND GO" SKELETON

)SEL &GOSTEP = YES

//SYSGO DD DSN=8&&&0BJSET,UNIT=SYSDA,SPACE=(CYL, (2,1)),

// DISP=(MOD, PASS)
)JIM LINKGO
)ENDSEL

)CM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET
)SEL &GOSTEP = NO

//SYSGO DD DSN=8ASMOUT (&MEMBER) ,DISP=0LD

) ENDSEL

/1*

Figure 82. Sample Skeleton File

DBCS-Related Variables in File Skeletons

The following rules apply to substituting DBCS related variables in file skeletons.
These rules also apply to messages and file-tailoring operations.

e If the variable contains MIX format data, each DBCS subfield must be enclosed
with shift-out and shift-in characters.
Example:

eeee [DBDBDBDBDB] eee [DBDBDB]

ee... represents a field of EBCDIC characters
DBDB... represents a field of DBCS characters

-[1- represent shift-out and shift-in characters.

* If the variable contains DBCS format data only, the variable must be preceded
by the ZE system variable, without a n intervening blank.

Example:
...text...&ZE&DBCSVAR. .text...

Chapter 9. Defining File-Tailoring Skeletons 309

e If the variable contains EBCDIC format data and is to be converted to the
corresponding DBCS format data before substitution, the variable must be
preceded by the ZC system variable, without an intervening blank.
Example:

...text...8ZC&EBCSVAR. .text...

The ZC and ZE system variables can be used only for the two purposes described
above. For file skeleton definition and file tailoring, these two variables can be
used only between)DOT and)ENDOT statements. When variable substitution
causes a subfield-length of zero, the adjacent shift-out and shift-in characters are
removed.

310 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Chapter 10. Extended Code Page Support

EXTENDED CODE PAGE support allows panels, messages, and variable
application data to be displayed correctly on terminals using any of the supported
code pages. For example, a German panel can be displayed on a French Country
Extended Code Page (CECP) terminal, with all common characters displayed
correctly. Any characters in the panel that do not exist in the terminal code page
are displayed as periods (.).

. CCSID stands for Coded Character Set IDentifier. The CCSID is a short
identifier, representing a code page and character set combination. An extended
CCSID has the same code page as its base CCSID, but has a larger character set.

ISPF sugports the EXTENDED CODE PAGES listed in [‘Supported CCSIDs” or

Translating Common Characters

ISPF translates common characters from EXTENDED CODE PAGES to the code
page of the terminal for panel) BODY,)MODEL, and)AREA text, if the panel is
tagged with a CCSID, and for the long and short message text if the message
member is tagged with a CCSID.

The TRANS service is provided to allow the application to translate variable
application data from one CCSID to another CCSID (see ISPF Services Guide).

In a panel tagged with a CCSID, all characters that are not)BODY,)MODEL, and
)JAREA text and all characters in variable names within the)BODY,)MODEL, and
JAREA text of a tagged panel and within the message text of a tagged message
member must be in the syntactic character set:

c AZ

* a-z

* 09

c +<=>%&*"’
e (), _-./:3;7

Note: Lowercase a—z can be used for any CCSID supported by ISPF except the
Japanese (Katakana) Extended CCSID 930.

If an EXTENDED CODE PAGE is specified and the terminal code page and
character set is one of those recognized by ISPF, all displayable code points are
available for display (no displayable code points are invalidated by ISPF).

If an EXTENDED CODE PAGE is not indicated in a panel or message member, a
base character set and code page is assumed based on the terminal type specified
in option 0 (see ISPF User’s Guide).

Z Variables

The following Z variables are available for code page processing:
ZTERMCP

Terminal code page. Returned as a 4-digit decimal number (4 characters).
ZTERMCS

Terminal character set. Returned as a 4-digit decimal number (4 characters).

© Copyright IBM Corp. 1980, 2001 311

ZTERMCID
Terminal CCSID. Returned as a 5-digit decimal number (5 characters).
ZERRCSID
Contains the 5-digit decimal CCSID of a dialog error message, or blanks if
the error message is not tagged with a CCSID. Returned as a 5-digit
decimal number (5 characters).

If an extended code page is specified for a panel or message and the terminal code
page cannot be determined, there is no transformation of characters.

[Cable 2d illustrates when characters will be transformed for Extended Code Page
support and when they will not be transformed:

Table 20. Character Transformation Table

Terminal Query Terminal Query Terminal Query
Reply CP/CS Reply CP/CS Reply CP/CS
Valid for ISPF Not Returned Invalid for ISPF
CCSID Tag Present Characters Characters not Characters not
transformed transformed transformed
No CCSID Tag Present"haracters not Characters not Characters not
transformed transformed transformed

For DBCS languages, the beginning and ending inhibited character tables are
enhanced to include characters from the extended code pages for the text
formatting of messages and panels.

Panels Tagged with CCSID

Panels can be defined with a)CCSID section and the NUMBER (xxxxx) keyword
where xxxxx is the CCSID of the extended code page as defined by Character Data
Representation Architecture. The)CCSID section must be the first section in the

panel. See I'Defining the CCSID Section” on page 213,

Messages Tagged with CCSID
An ISPF message can be defined with .CCSID=xxxxx. See Ehiessa.ges_"fa.ggedmuﬂ

CCSID” on page 295
I (@)

GETMSG Service

The GETMSG service can be called with a CCSID parameter. If the message is
tagged with a CCSID, the CCSID will be returned; otherwise, blanks will be
returned.

TRANS Service

Users can call the TRANS Service in ISPF to translate variable data specified by the
user from one CCSID to another CCSID. The fo and from CCSIDs are also specified
by the user in the TRANS call (see ISPF Services Guide). For a list of the
EXTENDED CODE PAGE translate tables provided by ISPF, see [Extended Codd
Pagp Translate Tables Provided by ISPE” on page 321

ISPccsid Translate Load Modules

The ISPccsid translate load modules provide ISPF with the information needed to
translate data from one CCSID to another. There is one ISPccsid translate load

312 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

module for each of the supported CCSIDs. The name (or alias for those ISPccsid
modules provided by ISPF) of each CCSID translate load module is made up of
the 5-digit CCSID, prefixed with ISP. For example, load module ISP00111 supports
translation of the CCSID 00111. Each CCSID translate load module must contain
two translate tables. The required translate tables permit data to be translated
between the respective CCSID and CCSID 00500. Additionally, each CCSID load
module can contain up to 256 pairs of optional direct translate tables. ISPF will use
direct translate tables when available. Otherwise, ISPF translates through CCSID
00500. Translating through CCSID 00500 can result in valid characters being lost.
This is due to CCSID 00500 not having all possible code points defined.

ISPccsid Translate Load Module Generation Macro

An assembler macro that permits the user to generate customized ISPccsid
translate load modules is supplied with ISPE. The macro also allows the user to
add direct translate tables to the ISPccsid translate load modules ISPF supplies
with the product.

Only the values for the hex digits X'40” through X'FE’ are defined in a given
translate table. These are the only code points that vary from CCSID to CCSID.

The assembler macro is:
ISPCCSID CCSID=nnnnn,TO=to-address,FROM=from-address

ISPCCSID Macro

The initial ISPCCSID macro usage identifies the CCSID associated with the
particular ISPccsid translate load module and provides addresses of the to and from
CCSID 00500 translate tables.

Subsequent usage of the ISPCCSID macro in a particular ISPccsid translate load
module generation identifies the CCSID and translate table addresses of optional
direct to and from translate tables.

Description of Parameters

nnnnn
Required parameter. The nnnnn value is a 5-digit decimal (5 characters)
number that specifies a CCSID number. The nnnnn value on the first or only
ISPCCSID macro definition is the CCSID associated with the ISPccsid translate
load module. The nnnnn value on other than the first ISPCCSID macro
definition is the CCSID associated with direct to and from translate tables.
Assembly errors will occur if this parameter is not 5 digits.

to-address
Required parameter. On the first or only ISPCCSID macro definition, this
parameter specifies the address of the translate table that converts data from
the CCSID associated with the respective ISPccsid translate load module to
CCSID 00500. On subsequent ISPCCSID macro definitions within the same
ISPccsid translate load module, it specifies the address of the translate table
that converts data from the CCSID associated with the respective ISPccsid
translate load module to the CCSID specified on this ISPCCSID macro
definition.

from-address
Required parameter. On the first or only ISPCCSID macro definition, this
parameter specifies the address of the translate table that converts data from
CCSID 00500 to the CCSID associated with the respective ISPccsid translate

Chapter 10. Extended Code Page Support 313

load module. On subsequent ISPCCSID macro definitions within the same
ISPccsid translate load module, it specifies the address of the translate table
that converts data from the CCSID specified on this ISPCCSID macro definition
to the CCSID associate with the respective ISPccsid translate load module.

ISPccsid Translate Load Module Definition Examples

Each ISPccsid translate load module must be compiled separately using assembler
H (or functional equivalent). w shows an example of a basic translate
model, and ﬁ@ shows an example of a translate model with two direct
CCSID entries.

ISPCCSID CCSID=00111,TO=TRT0500,FROM=TRFR500

*
*

TRT0500 DC XL191'... 00111 TO 00500
TRFR500 DC XL191'... 00111 FROM 00500 (00500 TO 00111)
END

Figure 83. Basic ISP00111 Translate Module.

ISPCCSID CCSID=00222,TO=TRT0500,FROM=TRFR500
ISPCCSID CCSID=00333,T0=TRT00333,FROM=TRF0O0333
ISPCCSID CCSID=00444,T0=TRT00444,FROM=TRF00444

*
*

TRT0500 DC XL191'... 00222 TO 00500

TRFR500 DC XL191'... 00222 FROM 00500 (00500 TO 00222)
*

*

TRT00333 DC XL191'... 00222 TO 00333

Figure 84. ISP00222 Translate Module with Two Direct CCSID Entries

KANA and NOKANA Keywords

314

If a CCSID is specified, the KANA (panels and messages) and NOKANA
(messages) keywords are ignored by ISPF. Panels and messages specifying the
Japanese (Katakana) Extended CCSID (CCSID=00930) are handled as follows
regardless of whether or not KANA or NOKANA (for messages) keywords are
specified:

* If the terminal code page is the base Katakana code page, all characters in the
panel)BODY,)MODEL, or)AREA text or short and long message text, except
lowercase English characters, are left as is. Because the base Katakana code page
does not support lowercase English characters, all lowercase English characters
are translated to uppercase English characters. All other parts of the panel or
message must be in the syntactic character set, excluding characters a—z.

* If the terminal code page is non-Katakana, all lowercase English characters in
the)BODY,)MODEL, or)AREA text or short and long message text in a panel
or message that has been tagged with the extended Katakana code page
(CCSID=05026) are translated to the equivalent lowercase English characters in
the terminal code page for display. All Katakana characters are displayed as
periods (.). For example, the lowercase a, which is X'62" in the extended
Katakana code page, is translated to X’81" (lowercase a) in the U.S. English code
page. The Katakana character which is X’81" is translated to a period (X'4B’) in
the U.S. English code page. All other parts of the panel or message must be in
the syntactic character set, excluding characters a-z.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Character Translation

[Cable 21 illustrates the character translation from the extended Katakana code page
and from the extended Japanese (Latin) code page (if CCSID=00930 or
CCSID=00939 is specified in a panel, message, or in the TRANS service) to the U.S.
English (CECP and base) code page, to the extended and base Katakana, and to the
Japanese (Latin) Extended code pages for code points X’81", X'62" and X'59".

Table 21. Character Translation from Extended Katakana Code Page

Destination Source Translation Source Translation
Code Page CCSID=00930 CCSID=00939
Base X'81’ X'81 X'81 X'C1’
Katakana X'62’ X'C1r X'59 X'81
(base code
page)
Extended X'81’ X'81’ X'81 X'62"
Katakana X'62’ X'62’ X'59 X'81

(CCSID=00930)

U.S. English X'81’ X'4B’ X'81 X'81
CECP and X'62 X'81" X'59 X'4B’
Non-CECP

Japanese

(Latin)

Non-

Extended

Japanese X'81" X'59 X'81” X'81"
(Latin) X'62’ X'81’ X’59’ X’59’
Extended

(CCSID=00939)

Code Points

X'81

X'62’

X'59’

X'Cr

Character Translation

A Katakana character in the Katakana code pages and is lowercase a in the
U.S. English (CECP and base) and Japanese (Latin) (Extended and base)
code pages.

Lowercase a in the extended Katakana (CCSID=00930) code page, a
Katakana character in the extended Japanese (Latin) (CCSID=00939) code
page, and is an unknown character in the U.S. English, base Japanese
(Latin), and base Katakana code pages.

A Katakana character in the Japanese (Latin) Extended (CCSID=00939)
code page, and an unknown character in the other code pages.

Uppercase A and X’4B’ is a period (.) in all of the previously mentioned
code pages.

Chapter 10. Extended Code Page Support 315

Supported CCSIDs

The CCSIDs listed in [[able 2 are supported for panels and messages that specify
an EXTENDED CODE PAGE and for the TRANS service.

Table 22. Extended CCSID1 Supported

CCSID Character Set Code Page Country/Language

00037 697 37 US.A.
Canada
Netherlands
Portugal
Brazil
Australia
New Zealand

00273 697 273 Austria
Germany

00277 697 277 Denmark
Norway

00278 697 278 Finland
Sweden

00280 697 280 Italy

00284 697 284 Spain
L.A. Spanish

00285 697 285 United Kingdom

00297 697 297 France

00420 235 420 Arabic

00424 941 424 Hebrew

00500 697 500 Switzerland
Belgium

00838 1176 838 Thailand

00870 959 870 Latin-2

00871 697 871 Iceland

00875 923 875 Greece

00880 960 880 Cyrillic

01025 1150 1025 Cyrillic

01026 1126 1026 Turkey

01047 697 1047 Latinl

01123 1326 1123 Ukraine

Table 23. Extended CCSID1 Supported (EURO)

CCSID Character Set Code Page Country/Language

00924 1353 0924 Latin9

01140 695 1140 US.A.
Canada
Netherlands
Portugal
Brazil
Australia
New Zealand

316 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Table 23. Extended CCSID1 Supported (EURO) (continued)

CCSID Character Set Code Page Country/Language
01141 695 1141 Austria
Germany
01142 695 1142 Denmark
Norway
01143 695 1143 Finland
Sweden
01144 695 1144 Italy
01145 695 1145 Spain
L.A. Spanish
01146 695 1146 United Kingdom
01147 695 1147 France
01148 695 1148 Switzerland
Belgium
01149 695 1149 Iceland
01153 1375 1153 Latin2
01154 1381 1154 Cyrillic
01155 1378 1155 Turkey
01158 1388 1158 Ukraine
01160 1395 1160 Thailand
04899 1356 0803 Hebrew
04971 1371 0875 Greece
12712 1357 0424 Hebrew
16804 1461 0420 Arabic

The extended CCSIDs shown in [lable 23 on page 314 and [Lable 24 are supported
for the TRANS service, and also with the use of the CCSID keyword in panels and

messages. These are the mixed SBCS/DBCS CCSIDs for these languages.

Japanese (Katakana) and Simplified Chinese EXTENDED CODE PAGES are not
supported on any terminal, but these CCSIDs are supported by ISPF for the

TRANS service and for tagging panels and messages.

Note: Although the following CCSIDs represent both SBCS and DBCS character
sets and code pages, only the SBCS character set and code page are involved
in the EXTENDED CODE PAGE support in ISPF.

Table 24. Extended SBCS and DBCS CCSIDs Supported

CCSID Character Set Code Page Country

00930 1172 290 Japanese (Katakana)
00939 1172 1027 Japanese (Latin)
00933 1173 833 Korean

00935 1174 836 Simplified Chinese
00937 1175 037 Traditional Chinese
01159 65535 1159 Traditional Chinese

Chapter 10. Extended Code Page Support

317

Table 24. Extended SBCS and DBCS CCSIDs Supported (continued)

CCSID Character Set Code Page Country

01364 65535 0834 Korean

01371 65535 0835 Traditional Chinese
01388 65535 0837 Simplified Chinese
01390 65535 0300 Japanese

01399 65535 0300 Japanese

05123 65535 1027 Japanese

08482 65535 0290 Japanese

Base Code Pages for Terminals

Translation to base character sets and code pages is supported for panels,
messages, and the TRANS service. See ['Base CCSIDs” an page 32(.

Direct translation between each base code page and its EXTENDED CODE PAGE
is provided. Also, direct translation between both base and extended Japanese
(Katakana) and both base and extended Japanese (Latin or English) is provided. All
translation between the single-byte EXTENDED CODE PAGES for the double-byte
languages and the CECP code pages is through CCSID 00500.

Adding Translate Tables for Extended Code Page Support

318

You can add code pages to be used for messages and panels that specify code page
and for the TRANS service by creating the following translate tables using the
sample assembler module ISPEXCP as an example. (ISPEXCP is provided in the
SYS1.SAMPLIB library in the MVS environment.) The tables to translate between
the new code page and CCSID 00500 are needed to reduce the number of translate
tables necessary to translate characters between the new code page and any other
supported (or added) code page. For example, to translate characters from a panel
with CCSID=xxxxx to a terminal with CCSID=yyyyy, the characters in the panel
are first translated to CCSID 00500 and then from CCSID 00500 to CCSID yyyyy
for display on the terminal.

Note: The translate tables for the CCSIDs listed in tEa.ble_Zlon_pa.ge_Bld and

[Cable 24 on page 317 are provided and shipped with ISPE. Also, see

I'Extended Code Pngp Translate Tables Pravided by ISPE” on page 321l

Any translate tables that are added must be named ISPnnnnn, where nnnnn is the
CCSID. The translate tables should include code points X'40” through X'FE’.

* The following example illustrates the translation to CCSID 00500 from CCSID
xxxxx, where xxxxx is the CCSID for the new code page. This CCSID must be
different from any of the supported CCSIDs previously listed, and should be a
CCSID defined in the Character Data Representation Architecture. In

, xxxxx is 00037.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Table Hexadecimal Code Position

T0_500 DC X'4041424344454647" (X'40' to X'47')
DC X'4849B04BA4CAD4EBB' (x'48' to X'4F')
DC X'5051525354555657 " (X'50" to X'57')
DC X'58594F5B5C5D5EBA" (X'58' to X'5F')
DC X'78797A7B7C7D7E7F' (X'78' to X'7F')
DC X'8081828384858687 " (x'80' to X'87')
DC X'ES8E9EAEBECEDEEEF' (X'E8"' to X'EF')
DC X'FOF1F2F3FAF5F6F7" (X'FO' to X'F7')
DC X'F8F9FAFBFCFDFE' (X'F8' to X'FE")

Figure 85. Translation to CCSID 00500 from CCSID XXXXX

. w illustrates the translation to CCSID xxxxx from CCSID 00500, where
xxxxx is the CCSID for the new code page. This CCSID must be different from
any of the supported CCSIDs listed above, and should be a CCSID defined in
the Character Data Representation Architecture. In this example, xxxxx is 00037.

Table Hexadecimal Code Position

FROM_500 DC X'4041424344454647' (X'40' to X'47')
DC X'4849BA4B4CADAESA" (X'48' to X'4F')
DC X'5051525354555657" (X'50' to X'57')
DC X'5859BB5B5C5D5EBO! (X'58' to X'5F')
DC X'78797A7B7C7D7E7F' (X'78' to X'7F')
DC X'8081828384858687"' (X'80' to x'87')
DC X'EBE9EAEBECEDEEEF' (X'E8' to X'EF')
DC X'FOF1F2F3F4F5F6F7"' (X'FO' to X'F7')
DC X'F8F9FAFBFCFDFE' (X'F8' to X'FE')

Figure 86. Translation to CCSID XXXXX from CCSID 00500

* Optionally, any number of pairs of to and from tables can be provided for direct
translation from the new CCSID to and from another CCSID.

The assembler macro, ISPCCSID, is supplied with ISPF to allow you to generate
custom ISPxxxxx translate load modules (Where xxxxx is the new CCSID). Calls to
this macro must also be coded for the To_500 and From_500 tables and any to and
from tables for direct translation. The load module must either have the name
ISPxxxxx (where xxxxx is the new CCSID) or an alias of ISPxxxxx. See
[Cranslate T.oad Modules” an page 312, [ISPecsid Translate T.oad Module Generatiod
IMac_tQ on page 3|3‘ and ISPCCSID Macra” on page 313

Chapter 10. Extended Code Page Support 319

Note: New translate tables can still be added based on terminal type as described
in ISPF Planning and Customizing for untagged messages and panels.

Direct to and from translate tables can be added for direct translation (to prevent
possible loss of characters through CCSID 00500 for character sets other than 697).
Additional direct translation tables can also be added to the extended code page
translate tables provided by ISPE. The direct translation CCSID must be one of the
CCSIDs supported by ISPE, or added by the user. If the CCSID of the terminal is
the same as the CCSID in any of the direct translation tables, those tables are used.
Otherwise, the To_500 and From_500 tables are used to translate through CCSID
00500.

Note: Both to and from translate tables must be provided for direct translation
tables as well as CCSID 00500 tables, even though there may be no
translation needed. For example, to translate from a base CCSID to an
extended CCSID for the same code page, all characters will translate to
themselves.

Base CCSIDs

The CCSIDs for the BASE CODE PAGES supported by ISPE Ethat include mixed
SBCS/DBCS CCSIDs for the DBCS languages) are listed in .

Table 25. Base CCSIDs Supported

CCSID Character Set Code Page Country/Language
00803 1147 424 Hebrew (Old)

00931 101 037 Japan (English)

04369 265 273 Germany and Austria
04371 273 275 Brazil

04373 281 277 Denmark and Norway
04374 285 278 Finland and Sweden
04376 293 280 Italy

04380 309 284 L.A. (Spanish Speaking)
04381 313 285 U.K. English

04393 1129 297 France

04934 938 838 Thailand

04966 959 870 Latin-2

04976 960 880 Cyrillic

05029 933 833 Korean

05031 936 836 Simplified Chinese
05033 101 037 Traditional Chinese
08229 101 037 U.S. English and Netherlands
08476 650 284 Spain

09122 332 290 Japan (Katakana)
41460 904 500 Switzerland

45556 908 500 Switzerland

320 2z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Note: Although the CCSIDs for the DBCS languages (Japanese, Korean, and

Chinese) represent both SBCS and DBCS character sets and code pages, only
the SBCS character set and code page are involved in the EXTENDED
CODE PAGE support in ISPFE.

Extended Code Page Translate Tables Provided by ISPF

The translate tables provided by ISPF that can be updated by the user are as
follows:

ISPSTC1 (CCSID=00037 / 01140 U.S.A., Canada, Netherlands, Portugal, Brazil,
Australia, New Zealand)

ISPSTC2 (CCSID=00273 / 01141 Austria and Germany)
ISPSTC3 (CCSID=00277 / 01142 Denmark and Norway)
ISPSTC4 (CCSID=00278 / 01143 Finland and Sweden)
ISPSTC5 (CCSID=00280 / 01144 Italy)

ISPSTC6 (CCSID=00284 / 01145 Spain and Spanish-Speaking)
ISPSTC7 (CCSID=00285 / 01146 United Kingdom)
ISPSTC8 (CCSID=00297 / 01147 France)

ISPSTC9 (CCSID=00500 / 01148 Switzerland and Belgium)
ISPSTC10 (CCSID=00939 Japan (Latin))

ISPSTC11 (CCSID=00930 Japan (Katakana))

ISPSTC12 (CCSID=00933 Korea)

ISPSTC13 (CCSID=00935 Simplified Chinese)

ISPSTC14 (CCSID=00937 Traditional Chinese)

ISPSTC15 (CCSID=00870 Latin-2)

ISPSTC16 (CCSID=00880 Cyrillic)

ISPSTC17 (CCSID=01025 Cyrillic)

ISPSTC18 (CCSID=00420 Arabic)

ISPSTC19 (CCSID=00424 Hebrew)

ISPSTC20 (CCSID=00838 Thai)

ISPSTC21 (CCSID=00871 / 1149 Iceland)

ISPSTC22 (CCSID=00875 Greek)

ISPSTC23 (CCSID=01026 Turkish).

The source for the above modules is provided in the SYS1.SAMPLIB library in the
MVS environment.

Example of User-Modifiable ISPF Translate Table

The following is the module for CCSID 00037 (ISPSTC1). The existing tables can be
modified, or more pairs of direct translation tables can be added. To add direct
translation tables, add a new ISPCCSID macro call for the new direct translate
tables, and add the new tables. Rename the assembler program to ISPTTCx(x),
where x(x) is the last 1- or 2-digit number of the ISPSTCx(x) name. For example,
ISPSTC1 should be renamed ISPTTC1, and ISPSTC14 renamed ISPTTC14.

*

*

*

*

*

*

THE FOLLOWING MACROS WILL GENERATE THE CCSID 00037 MODULE.

ISPCCSID CCSID=00037,TO=TTC1T5H, FROM=TTC1F5H
ISPCCSID CCSID=08229,TO=TTC1TB1,FROM=TTC1FB2
ISPCCSID CCSID=04371,TO=TTC1TB2,FROM=TTC1FB2

TTCIT5H - CCSID 00037 TO CCSID 00500 Table

TTC1T5H DS 0OXL191

DC X'4041424344454647" (X'40' TO Xx'47")
DC X'4849B04B4CADAEBB' (x'48' TO X'4F')

Chapter 10. Extended Code Page Support 321

322

*

X'5051525354555657
X'58594F5B5C5D5EBA"
X'6061626364656667 '
X'68696A6B6CO6DOEGF
X'7071727374757677"
X'78797A7B7C7D7E7F"
X'8081828384858687
X'88898A8B8C8DSESF"
X'9091929394959697"
X'98999A9BICIDIEIF"
X'AOA1A2A3A4A5A6AT7
X'ABA9AAABACADAEAF'
X'5FB1B2B3B4B5B6B7
X'B8B94A5ABCBDBEBF"
X'COC1C2C3C4C5C6CT7 "
X'C8C9CACBCCCDCECF!
X'DOD1D2D3D4D5D6D7
X'D8DIDADBDCDDDEDF
X'EOE1E2E3EAESEGET
X'ESE9EAEBECEDEEEF'
X'FOF1F2F3FAF5F6F7"
X'F8F9FAFBFCFDFE'

* TTC1F5H - CCSID 00037 FROM

*

TTC1F5H DS
DC
DC
DC
DC
DC
DC

*

0XL191

X'4041424344454647 "
X'4849BA4BACAD4ESA"
X'5051525354555657
X'5859BB5B5C5D5EBO
X'6061626364656667 '
X'68696A6B6CO6DOEGF
X'7071727374757677"
X'78797A7B7C7D7E7F"
X'8081828384858687
X'88898A8B8C8DSESF"
X'9091929394959697"
X'98999A9BICIDIEIF"
X'AOA1A2A3A4A5A6AT7 "
X'ABA9AAABACADAEAF'
X'4AB1B2B3B4B5B6B7
X'B8B95F4FBCBDBEBF'
X'COC1C2C3C4C5C6CT7 "
X'C8C9CACBCCCDCECF!
X'DOD1D2D3D4D5D6D7
X'D8DIDADBDCDDDEDF
X'EOE1E2E3EAESEGET "
X'ESE9EAEBECEDEEEF'
X'FOF1F2F3FAF5F6F7"
X'F8F9FAFBFCFDFE'

(X'50"
(X'58"
(X'60"
(X'68"
(x'70"
(x'78"
(x'80"
(x'88'
(X'90"
(x'98"
(X'AQ"
(X'A8"
(x'BO"
(x'B8"
(x'co’
(x'cs'
(X'D0O"
(x'D8"
(X'EQ"
(X'E8"
(X'FO"
(X'F8"

CCSID 00500 Table

T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0

(x'40"
(x'48"
(X'50"
(X'58"
(X'60"
(X'68"
(x'70"
(x'78"
(x'80"
(x'88'
(X'90"
(x'98"
(X'AQ"
(X'A8"
(x'BO"
(x'B8"
(x'co’
(x'cs'
(X'D0O"
(x'D8"
(X'EQ"
(X'E8"
(X'FO"
(X'F8"

* TTC1TB1 - CCSID 00037 TO CCSID 08229 Table

*

TTC1TB1 DS

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

OXL191
X'404B4B4B4B4BABA4B'
X'4B4B4A4BACADAEAF!
X'504B4B4BAB4B4B4B"
X'4B4B5A5B5C5D5E5F!
X'60614B4B4AB4B4B4B"
X'4B4B6A6B6CODOEGF
X'4B4B4B4B4B4B4B4B'
X'4B797A7B7C7D7E7F"
X'4B81828384858687
X'88894B4B4AB4B4B4B"
X'4B91929394959697"
X'98994B4B4B4B4B4B"
X'4BA1A2A3A4A5A6A7

(x'40"
(x'48"
(X'50"
(X'58"
(X'60"
(X'68"
(x'70"
(x'78"
(x'80"
(x'88'
(X'90"
(x'98"
(X'A0"

T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0
T0

X 3K X XX 3K X X X XX X X X X XX X X X X X X X X
M TMMOOOOEWEI>T>TOOW00NNoOYOo oo
MN TN TN T NT N T N7 N TN T N7 N T

DX 3K 3K X 3K X X X X X X XX X X X X X XX X X X X X X
MMM MMOOOOTTEIEIII>TOOWOONNOTOO1o &
MN TN TN TN T NT N TN TN TN T N7 N TN

>< >< DK XK > X< X< XK > > X< X< X<
TOOVWOEXNNOT U A B
NT N TN TN TN TN TN
NN NN NN NN NN N NN

DC X'A8A94B4B4B4B4BAB' (X'A8' TO X'AF')
DC X'4B4B4B4B4B4B4B4B' (X'BO' TO X'B7"')
DC X'4B4B4B4BAB4B4B4B' (x'B8' TO X'BF')
DC X'COC1C2C3C4C5C6CT7 " (x'Cco' TO X'C7')
DC X'C8C94B4B4B4B4B4B' (x'C8' TO X'CF')
DC X'DOD1D2D3D4D5D6D7 " (x'DO' TO X'D7")
DC X'D8D94B4B4B4B4B4B' (x'D8' TO X'DF')
DC X'EO4BE2E3EAESEGE7' (X'EO' TO X'E7")
DC X'E8E94B4B4B4B4B4B' (X'E8' TO X'EF')
DC X'FOF1F2F3FAF5F6F7" (X'FO' TO X'F7')
DC X'F8F94B4B4B4B4B' (X'F8' TO X'FE")

*

* TTC1IFB1 - CCSID 00037 FROM CCSID 08229 Table

*

TTC1IFB1 DS 0OXL191

DC X'4041424344454647" (X'40" TO X'47')
DC X'48494A4BACADAELF" (X'48' TO X'4F')
DC X'5051525354555657 " (X'50" TO X'57')
DC X'58595A5B5C5D5E5F (X'58' TO X'5F')
DC X'6061626364656667" (X'60' TO X'67')
DC X'68696A6B6C6DEEGF (X'68' TO X'6F')
DC X'7071727374757677" (X'70" TO X'77')
DC X'78797A7B7C7D7E7F" (X'78' TO X'7F")
DC X'8081828384858687" (x'80' TO X'87')
DC X'88898A8BSCSDSESF" (x'88' TO X'8F')
DC X'9091929394959697" (X'90' TO X'97')
DC X'98999A9BICIDIEIF" (X'98' TO X'9F')
DC X'AOALA2A3A4A5AGA7 (X'AQ' TO X'A7')
DC X'ASA9AAABACADAEAF' (X'A8' TO X'AF')
DC X'BOB1B2B3B4B5B6B7" (X'BO' TO X'B7')
DC X'B8BIBABBBCBDBEBF' (X'B8' TO X'BF')
DC X'COC1C2C3C4C5C6CT" (X'co' TO X'c7')
DC X'C8CICACBCCCDCECF (X'c8' TO X'CF')
DC X'DOD1D2D3D4D5D6D7 " (X'DO' TO X'D7')
DC X'D8DIDADBDCDDDEDF" (X'D8' TO X'DF')
DC X'EQE1E2E3E4E5E6E7 (X'EQ' TO X'E7')
DC X'ESE9EAEBECEDEEEF" (X'E8' TO X'EF')
DC X'FOFLF2F3F4F5F6F7" (X'FO' TO X'F7')

X'FE')

DC X'F8F9FAFBFCFDFE' (X'F8' TO

*

* TTC1TB2 - CCSID 00037 TO CCSID 04371 Table

*

TTC1TB2 DS 0OXL191

DC X'404B4B4B4B4B794B' (x'40' TO X'47")
DC X'4B4B4B4BACADAE4B' (x'48' TO X'4F")
DC X'50D04B4B4B4B4B4B' (X'50" TO X'57")
DC X'4B4B4F5A5C5D5E4B! (X'58' TO X'5F')
DC X'60614B4B4B4B7C4B" (x'60' TO X'67")
DC X'5B4B4B6B6CO6D6EGF (X'68' TO X'6F')
DC X'4B4A4B4BABAB4B4B' (x'70' TO X'77")
DC X'4B4B7A4B4B7D7E7F' (x'78' TO X'7F")
DC X'4B81828384858687" (x'80' TO Xx'87")
DC X'88894B4B4B4B4B4B" (x'88' TO X'8F')
DC X'4B91929394959697" (X'90' TO X'97"')
DC X'98994B4B4B4B4B4B" (x'98' TO X'9F')
DC X'4BA1A2A3A4A5A6A7' (X'AQ' TO X'A7')
DC X'A8A94B4BAB4AB4B4B' (X'A8' TO X'AF')
DC X'5F44B4BB4B4B4B4B' (X'BO' TO X'B7"')
DC X'4B4B4B4BAB4B4B4B' (x'B8' TO X'BF')
DC X'4BC1C2C3C4C5C6C7" (x'Cco' TO X'C7")
DC X'C8C94B4B4B4B4BCO" (x'c8' TO X'CF')
DC X'4BD1D2D3D4D5D6D7 " (x'DO' TO X'D7")
DC X'D8D94B4B4B4B4B4B' (X'D8' TO X'DF')
DC X'EO4BE2E3EAESEGE7 (X'EO' TO X'E7")
DC X'E8E94B4B4B4B4B7B' (X'E8' TO X'EF')
DC X'FOF1F2F3F4F5F6F7" (X'FO' TO X'F7')
DC X'F8F94B4B4B4B4B' (X'F8' TO X'FE')

Chapter 10. Extended Code Page Support 323

324

*

* TTC1IFB2 - CCSID 00037 FROM CCSID 04371 Table

*

TTC1FB2 DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

0XL191

X'4041424344454647"
X'4849714BACAD4ESA"
X'5051525354555657"
X'58595B685C5D5EBO
X'6061626364656667 '
X'6869486B6C6D6EGF
X'7071727374757677"
X'78467AEF667D7E7F"
X'8081828384858687
X'88898A8B8C8DSESF"
X'9091929394959697 "
X'98999A9B9CIDIEIF"
X'AOA1A2A3A4A5A6A7
X'ABA9AAABACADAEAF'
X'BOB1B2B3B4B5B6B7
X'B8BI9BABBBCBDBEBF '
X'CFC1C2C3C4C5C6C7 "
X'C8C9CACBCCCDCECF'
X'51D1D2D3D4D5D6D7
X'D8D9IDADBDCDDDEDF
X'EOE1E2E3EAESEGET
X'ESE9EAEBECEDEEEF'
X'FOF1F2F3FAF5F6F7"
X'F8F9FAFBFCFDFE'

(X'40"
(x'48"
(x'50"
(X'58"
(X'60"
(X'68"
(x'70"
(x'78"
(x'80"
(x'88'
(x'90"
(x'98"
(X'AQ"
(X'A8"
(X'BO"
(x'B8"
(x'co’
(x'cs'
(x'Do"
(X'D8"
(X'EO"
(X'E8"
(X'FO"
(X'F8"

DX 3K 3K 3K 3K X X XX X X X X XX X X X X X X X X X X X
T TMMMOOOOTTIEIITITOOWOOONNOTOO1IOo & B
MN TN TN TN T N7 N TN T N7 N TN T N7

Appendix A. Character Translations for APL, TEXT, and
Katakana

This appendix contains the character translation tables for APL, TEXT, and
Katakana. This information does not include Extended Code Page Support. See

ISPF permits use of all keyboards for all models of 3270 and 3290 terminals, and
text keyboards for 3278 and 3279 terminals. The 2-byte transmission codes for APL
and text characters are translated by ISPF into 1-byte codes for internal storage as
shown in Figure 87 on page 324 and [Figure 88 on page 327. ISPF also permits use of
3277 and 3278 Japanese Katakana terminals. ISPF does not permit the use of 3277
and 3278 Katakana terminals and an APL terminal at the same time.

The character codes are documented in IBM 3270 hardware manuals. Many of the
Katakana codes overlay the lowercase EBCDIC codes. In a panel definition, it is
assumed that lowercase EBCDIC characters are to be displayed for these codes,
unless the) BODY header statement includes the keyword KANA. Example:

)BODY KANA

The keyword, KANA, is used on a)BODY header statement when Katakana
characters are included within the panel. Input and output fields and model line
fields are not affected by use of the KANA keyword. Rules for display of text
fields are as follows:

¢ If the terminal type is Katakana, and
— The KANA keyword is present, text characters are left as is.

— The KANA keyword is not present, any lowercase text characters are
translated to uppercase and uppercase text characters are left as is.

e If the terminal type is not Katakana, and

— The KANA keyword is present, any lowercase text characters are treated as
being nondisplayable and are translated to a period. Any uppercase text
characters are left as is.

— The KANA keyword is not present, lowercase and uppercase text characters
are left as is.

See [How to Define a Message” on page 29(for a description of how the KANA

keyword provides a similar function for messages containing lowercase characters
that must be displayed on a Katakana terminal.

Note: The KANA keyword is not needed for panels and messages that specify a

CCSID for Extended Code Page Support. See [!Chapter 10._Extended Codd

”

© Copyright IBM Corp. 1980, 2001 325

Character Translations

National use character.
Graphics shown are for U.S. keyboards;
graphics differ in other countries.

D 3278 only; invalid character on 3277.

00
10
20
30
40 |[sp | A B | C|D|E|E|GIH]|I|¢ < | + |
4 4
50 | & [J|K|L|M|N|JO|P|Q|R|!]|S$] *]) .
— S I I S— — B I '_A 4 |
60 | | /| S| T|U|V IW|X|Y]|Z][, s | | | > | 7
- A
70 A v N # | @ ! _|n
4 4d 4 4
80 ~ a b c d e f g h i + + < [L -
90 | [J j k I m| n| o p | q r 5| c o <
N 4
A0 ~ S t u \% w X y z N U 1 [> o
|
BO | o | | 1| p | w x | N] = 20 S A I I
' ~ ~
col{|A|B|C|D|E|F|G|HI|I |ZX|ZJ 0 ®
po| J|J|K|L|M|[N|O|P|Q|R|T | " |7V]A4 A
EO [\ S| T|U| VI IW|X|Y|Z]|A]|XN e | BF|®
|
FOo| o| 1| 2| 3| 4| 5|6]| 7]|8]09 VI|IA|l® | ¢
o 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 87. Internal Character Representations for APL Keyboards

326 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

00

10

20

30

40

50

60

70

80

90

A0

BO

co

DO

EO

FO

National use character.
Graphics shown are for U.S. keyboards;
graphics differ in other countries.

sp ¢‘ < (+ I‘
& | 1 2 3 v !4 $‘) A B
_ / }‘ , % | > | 2
"l 4 PR Bl Il Y
a|b|c| d| e]|f gl h [N I B (o
Ol i k|1 |m{n|lo|p]|alr yla|)|+ =
| o~ s t u v w X y z ® Lo T [> o
R L A T I A A A O O O O R
{/A|B|C|D|E|F|G|H]| I |a]|L]|T]|V]|A]XN
ylJdlk|L|{mM|[N|O|P|lQ|R|E|A|S|q9]«]| >
v v s Tlulviw x|y |lz|g|F]Ad[slv]|"
1|1 23| 4| 5|6]| 78] 9] | Ll | | T
0 1 2 3 4 5 6 7 8 9 A B Cc D E F

Figure 88. Internal Character Representations for Text Keyboards

Appendix A. Character Translations for APL, TEXT, and Katakana

327

328 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Appendix B. ISPTTDEF Specify Translate Table Set

ISPF provides a program, ISPTTDEF, that can be used for specifying the set of
terminal translate tables to be used. This lets you specify private sets of translate
tables.

Note: This program is not used for Extended Code Page Support translate tables.

See I‘Chapter 10_Extended Code Page Support” on page 311,

You can invoke ISPTTDEF from a selection panel, as a command, or from a dialog
function. The format of the ISPTTDEF program call is:

SELECT PGM(ISPTTDEF) PARM(xxx)

where xxx is the terminal type or the name of the load module containing translate
tables.

Return codes from invoking ISPTTDEF are as follows:
0 Normal completion
4 Translate tables could not be loaded

Valid terminal types are those that can be specified using the ISPF Settings panel.

If the name specified is not a valid terminal type, ISPF attempts to load a module
having that name.

© Copyright IBM Corp. 1980, 2001 329

330 2z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Appendix C. Diagnostic Tools and Information

This chapter contains debugging tools, diagnostic information, and common
problems that can occur while using ISPF.

ISPF Debug Tools

The following tools ship with ISPF as samples.

ISRABEND
A CLIST that provides a step-by-step explanation of how to diagnose an
abend interactively. It uses TSO TEST to gather the information that the
IBM support organization normally requires.

ISRCSECT
A REXX exec used in conjunction with ISRTCB exec. It takes the entry
point of a load module and begins searching for a specific CSECT. If it
finds one, the exec displays the CSECT’s eye-catcher.

ISRFIND
A REXX exec that issues a LISTA STATUS and searches for a specified
member or load module. Also, the exec optionally calls AMBLIST to check
the MODIFIED, FIXED, and PAGEABLE LPAs and checks LPALIST and
LNKLST (pointed to by system control blocks) for the specified load
module. If invoked under ISPF, the information is displayed via an ISPF
table display (panel ISRFINDP) and allows the user to BROWSE or EDIT
the specified member.

ISRPOINT
A REXX exec used in conjunction with the ISRTCB exec. This exec uses the
entry point address obtained from ISRTCB and lists the CSECT
eye-catchers associated with that load module.

ISRTCB
A REXX exec that emulates the TSO TEST command LISTMAP. It lists the

TCBs and the load modules (with their entry points) associated with each
TCB, without using TSO TEST.

ISRTEST
A CLIST that uses TSO TEST to load the job pack area (JPA) and set
breakpoints on entry to a specific ISPF or PDF CSECT. This allows for the
verification of the compile date associated with the CSECT with the most
recent maintenance level for that version or release. Additionally, you can
modify this sample to set specific breakpoints within the CSECT to identify
the failing instruction.

Diagnostic Information

This section is intended to help you gather information in order to diagnose ISPF
problems.

© Copyright IBM Corp. 1980, 2001 331

Diagnostic Information

332

Using the ENVIRON System Command

ISPF provides the ENVIRON command to assist you in gathering data that can be
helpful in diagnosing problems, thus reducing service time. The ISPF session does
not have to be running in any ISPF TEST/TRACE mode when you use the
ENVIRON command.

The ENVIRON command can help you:

* Produce system abend dumps when not running in ISPF TEST mode
(ENBLDUMP parameter)

* Trace the TPUT, TGET, and PUTLINE buffers and obtain dump information for
TPUT and TGET errors (TERMTRAC parameter)

* Gather terminal status information (TERMSTAT parameter)

You can display a panel (w) for selecting command options by entering the
ENVIRON command with no parameters, or display the panel through the use of
the Environ settings... choice from the Environ pull-down on the ISPF Settings
panel. This panel includes the current values of the ENVIRON command
parameters (ENBLDUMP and TERMTRAC) and the ddname, if any, allocated for a
dump data set. The values can be changed by entering new values directly on the
panel.

=] EE

Log/List Function keys Colors Environ Temporary Help
- ISPF Settings --
ISPF ENVIRON Command Settings

S Enter "/" to select option
Enable a dump for a subtask abend when not in ISPF TEST mode

Terminal Tracing (TERMTRAC)
Enable . . . _ 1. Enable terminal tracing (ON)
2. Enable terminal tracing when a terminal error
is encountered (ERROR)
3. Disable terminal tracing (OFF)

DDNAME . . . ISPSNAP (DDNAME for TERMTRAC ON, ERROR, or DUMP.)
T Terminal Status (TERMSTAT)
Enable . . . _ 1. Yes, invoke TERMSTAT immediately
2. Query terminal information
3. No
Command ===>
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward
F9=Swap Fl2=Cancel
c _
Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

Fl0=Actions Fl2=Cancel

Figure 89. ENVIRON Settings Panel (ISPENVA)

You can issue the ENVIRON command at any time during an ISPF session.

ENVIRON Command Syntax and Parameter Descriptions

The general syntax for the ENVIRON command is:

ENVIRON [ENBLDUMP [ON|OFF]]
[TERMTRAC [ON|ERROR|DUMP|OFF]]

[TERMSTAT [QUERY]]

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic Information

The parameter descriptions for the ENVIRON command are as follows:

ENBLDUMP
Specifying the ENBLDUMP parameter enables ISPF to produce an abend
dump if a subtask abnormally terminates when ISPF is not running in TEST
mode (as required prior to ISPF Version 2.3, and documented in ISPF Dialog
Developer’s Guide and Reference). The ENBLDUMP parameter does not apply to
attached commands. Prior to the time that a dump is taken you must allocate
either the SYSUDUMP, SYSMDUMP, or SYSABEND ddname. For more
information about these data sets, refer to MVS Diagnostic Techniques

The default value for the ENBLDUMP parameter is ON. ENVIRON
ENBLDUMP ON specifies to ISPF that a dump for the abending subtask is to
be generated.

Issuing ENVIRON ENBLDUMP OFF cancels the effect of the ON status.

The ENBLDUMP parameter value is preserved across ISPF sessions in the
ISPSPROF profile.

With ENBLDUMP active, even when ISPF is not running in TEST mode,
abnormal termination of a subtask results in a dump being taken and control
being returned to TSO. ISPF execution is not resumed.

When running in ISPF TEST mode, issuing ENVIRON ENBLDUMP has no
effect on dump processing.

TERMTRAC
Specifying the TERMTRAC parameter allows you to trace all terminal input
and output data (TPUT, TGET, PUTLINE) during an ISPF session. The
TERMTRAC parameter also allows you to turn on in-core tracing and cause
ISPF to produce a SNAP dump if the TPUT or TGET service results in an error.
ISPF does not have to be running in TSO TEST mode.

Note: The ENVIRON TERMTRAC buffer does not include:

e The TPUT/TGET instructions issued to query the terminal:
— At ISPF initialization
— By the ENVIRON TERMSTAT command

e The TPUT instruction issued to clear the screen at ISPF termination

e Under certain severe ISPF error conditions, the TPUT instruction issued to
display a severe error line message

Before issuing the ENVIRON TERMTRAC DUMP command you must have
first issued the ENVIRON TERMTRAC ON or ENVIRON TERMTRAC ERROR
command.

Prior to using the TERMTRAC option, you must define to ISPF the ddname for
the data set to be used for the SNAP macro, which ISPF invokes to provide
data stream dumps. The ddname can be defined by specifying it on the panel
displayed as a result of either issuing the ENVIRON command with no
parameters, or selecting the Environ settings... choice from the Environ
pull-down on the ISPF Settings panel. You must follow the data set
characteristics guidelines defined by MVS for the SNAP macro. See MVS/XA
Supervisor Services and Macro Instructions for DCB information that can be
specified for the SNAP ddname.

Appendix C. Diagnostic Tools and Information 333

Diagnostic Information

The terminal data stream buffer used for ENVIRON TERMTRAC data
collection is not reset to zeroes.

Subparameters define terminal data tracing as follows:
* ENVIRON TERMTRAC ON

Activates TPUT, TGET, and PUTLINE buffer tracing of the terminal data
stream. All data is retained in a 24K buffer provided by ISPF. No buffer
entry is fragmented. If an entry will not fit into the remaining buffer space,
ISPF issues a SNAP to capture the buffer data. The next trace entry is stored
at the top of the buffer, regardless of the status of the SNAP execution.

Messages are displayed to the user only for errors during SNAP execution.
No messages are displayed during dumps taken as a result of the data
buffer filling.

Because ENVIRON TERMTRAC ON causes a SNAP dump to be taken each
time the buffer fills, the ddname that you allocate for the SNAP macro
should have a disposition of MOD. This assures that no trace data is lost.

The layout of the terminal data buffer for all SNAP dumps is:

1 TPUT/TGET/PUTLINE BUFFER TRACE

2 Header of 8 bytes initialized to
TERMTRAC

2 4-byte pointer to where the next entry
is to be placed

2 Reserved (20 bytes, for 32-byte boundary
alignment)

2 TPUT/TGET/PUTLINE DATA (*)
3 8-byte TPUT/TGET/PUTLINE identifier
3 4-byte pointer to previous entry
3 Information specific to the terminal

type identifier.

The TPUT/TGET identifiers and specific information for each is as follows.
Each buffer entry is aligned on a 32-byte boundary.

TGET ‘TGET ' —prior to issuing TGET SVC. 4-byte pointer to previous
entry. General purpose registers 0, 1, and 15:

RO = input data area size
R1 = input data area pointer
R15 = TGET option byte

TGETR
‘TGETR ’ —return from TGET SVC. 4-byte pointer to previous entry.
General purpose registers 1 and 15:

R1
R15

input data Tength
TGET return code
Four-byte length of data stream. Data stream.

TPUT ‘TPUT ’ —prior to issuing edit TPUT macro. 4-byte pointer to
previous entry. General purpose registers 0, 1, and 15:

RO = output data area
R1 = output data area pointer
R15 = TPUT option byte

4-byte length of data stream. Data stream.

TPUTR
‘TPUTR ” —return from edit TPUT macro. 4-byte pointer to previous
entry. General purpose register 15:

R15 = TPUT return code

334 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic Information

TPUTNE
‘TPUTNE ’ —prior to issuing the noedit TPUT macro. 4-byte pointer
to previous entry. General purpose registers 0, 1, and 15:

Rl = address of plist
R15 = TPUT option byte

16-byte noedit plist:

Reserved (2 bytes)

2-byte length of data stream
Code (1 byte)

3-byte addr of data stream
Reserved (8 bytes)

Data stream.

TPUTNER
‘“TPUTNER ’ —return from noedit TPUT macro. 4-byte pointer to
previous entry. General purpose register 15:

R15 = TPUT return code

PUTLINE
‘PUTLINE " —prior to issuing the PUTLINE macro. 4-byte pointer to
previous entry 12-byte PUTLINE parameter block:
Control flags (2 bytes)
2-byte TPUT options field

4-byte address of message
4-byte address of format-only line

125-byte message description:

2-byte message length
2-byte message offset
121-byte message

Actions that occur as a result of issuing the ENVIRON TERMTRAC
command when ENVIRON TERMTRAC ON is already in effect are listed by
command subparameter below:

ON ENVIRON TERMTRAC ON continues to function normally.

OFF Tracing is turned off and ISPF issues a SNAP macro. If ENVIRON
TERMTRAC tracing is requested again, the next entry is written at
the top of the buffer, regardless of whether the prior SNAP was
successful.

ERROR
Changes the setting of the command to ENVIRON TERMTRAC
ERROR. Tracing continues, with the next buffer entry being written
after the last entry written by the ENVIRON TERMTRAC ON
setting.

DUMP
The ENVIRON TERMTRAC ON condition continues. In addition,
ISPF issues a SNAP macro and, if the SNAP is successful, the next
trace entry is written at the top of the buffer. If the SNAP fails, the
next entry is written after the last entry prior to the SNAP.

¢ ENVIRON TERMTRAC ERROR

Initiates tracing of the TPUT, TGET, and PUTLINE bulffers. In addition, it

causes ISPF to initiate an MVS SNAP dump if a TPUT or TGET error occurs.

The dump includes the storage trace buffer, the current TCB, all system

Appendix C. Diagnostic Tools and Information 335

Diagnostic Information

control program information, and all problem program information. The
MVS SNAP macro definition provides more specific information about the
areas dumped when all system control program and problem program
information is requested.

ISPF issues the SNAP macro on the first occurrence of a TPUT failure. ISPF
makes three consecutive attempts to correct a TPUT error.

Before using this option, you must have defined the ddname for the SNAP
macro as described earlier in this topic under TERMTRAC.

Actions that occur as a result of issuing the ENVIRON TERMTRAC
command when ENVIRON TERMTRAC ERROR is already in effect are
listed by command subparameter below:

ON Changes the setting of the command to ENVIRON TERMTRAC ON.
Tracing continues, with the next buffer entry being written after the
last entry written by the ENVIRON TERMTRAC ON setting.

ERROR
ENVIRON TERMTRAC ERROR continues to function normally, with
the next trace entry written after the last ERROR trace entry.

OFF The setting for ENVIRON TERMTRAC is set to OFF. If ENVIRON
TERMTRAC tracing is requested again, the next entry is written at
the top of the buffer, regardless of whether the prior SNAP was
successful.

DUMP
The ENVIRON TERMTRAC ERROR condition continues. In
addition, ISPF issues a SNAP macro and, if the SNAP is successful,
the next trace entry is written at the top of the buffer. If the SNAP
fails, the next entry is written after the last entry prior to the SNAP.

e ENVIRON TERMTRAC DUMP

Causes ISPF to immediately issue a SNAP macro, but only if ENVIRON
TERMTRAC ON or ENVIRON TERMTRAC ERROR is active. The resulting
dump includes the storage trace buffer, the current TCB, all system control
program information, and all problem program information. The MVS SNAP
macro definition provides more specific information about the areas dumped
when all system control program and problem program information is
requested.

Notes:

1. This command execution does not turn off terminal data stream tracing if
it is active at the time.

2. The next entry is written to the top of the terminal data buffer if the
SNAP was successful; otherwise, tracing continues immediately after the
last trace buffer entry.

* ENVIRON TERMTRAC OFF

Resets active ENVIRON TERMTRAC ON and ENVIRON TERMTRAC
ERROR commands. If ENVIRON TERMTRAC is active, ISPF issues a SNAP
macro.

The TERMTRAC parameter value is preserved across ISPF sessions in the
ISPSPROF profile. The ddname specified for TERMTRAC on the ENVIRON
option panel is also saved across sessions.

TERMSTAT
Specifying the TERMSTAT option of the ENVIRON command allows you to
collect information about the characteristics of the terminal you are using and

336 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic Information

the line to which it is attached. The information is returned to your terminal by
using line mode, and is written to the ISPF log data set.

The description below of the information returned from an ENVIRON
TERMSTAT request is divided into three parts:

e A list of terminal characteristics as defined in ISPF variables. In other words,
this list defines what ISPF thinks your terminal characteristics are.

e A list of terminal characteristics as defined within TSO.

A list of structured fields that apply only to terminals with extended data
stream (EDS) capability.

If you issue ENVIRON TERMSTAT (without the QUERY parameter) ISPF
unconditionally returns information from lists A and B (below). In addition, if
your terminal is connected to a port that supports extended data streams, ISPF
returns information from list C (below).

If your terminal is one that supports extended data streams, such as an IBM
3279, but is connected to a non-EDS port, you can issue ENVIRON TERMSTAT
QUERY to force ISPF to return information from list C. Be aware that if you
issue ENVIRON TERMSTAT QUERY, and your terminal is not a type that
supports extended data streams, such as the IBM 3277, you will receive an
ORDER STREAM CHECK error.

Information returned as a result of issuing the ENVIRON TERMSTAT
command is as follows:

List A — Terminal Characteristics as Defined Within ISPF

14-bit terminal addressing mode (ON or OFF)

16-bit terminal addressing mode (ON or OFF)

Color mode (ON or OFF)

Highlighting mode (ON or OFF)

DBCS mode (ON or OFF)

Primary screen size (length, width, total bytes)
Alternate screen size (length, width, total bytes)
Partition screen size (length, width, total bytes)
ISPF terminal buffer data (TSB ptr., TSB size,

TPP addr.)

List B — Terminal Characteristics as Defined Within TSO

Return code from GTTERM

Primary screen information (rows, columns)
Alternate screen information (rows, columns)
Screen attribute value

Character set (ASCII or EBCDIC)

Extended data streams or non-EDS support
Return code from GTSIZE

GTSIZE information (rows, columns)

Access method being used (VTAM* or TCAM)

List C — Terminals Supporting EDS (structured fields)

Usable areas
Partitions
Character sets
Color

Highlighting

Reply modes

PC 3270

Implicit partition
Input control
Field rule

Appendix C. Diagnostic Tools and Information 337

Diagnostic Information

338

e ENVIRON TERMSTAT QUERY

The QUERY parameter allows you to request terminal data related to
extended data stream capability, even though your terminal is connected to a
port that does not support extended data streams.

Abend Panels Provide Diagnostic Information

When ISPF processing ends abnormally, diagnostic panels are available for
displaying:

* Task abend code

* Reason code

* Module name

* Entry point address

* Program-Status Word (PSW)

* Register content at the time of the abend

This information is used in logged abend messages. A tutorial panel displays a list

of the common abend codes.

On abnormal ISPF termination, the Error Recovery panel shown in w
indicates the abend code and reason code.

=
D‘D| |D‘D
Error Recovery

* x Kk Kk * *x *x * * *x *x * *k * *x * * * *x * * * *x * * * *x *x * * *x *x * *
* ok ok kK kK Kk Kk Kk ok ok k Kk Kk Kk Kk Kk Kk Kk Kk *k Kk Kk Kk Kk Kk Kk * K Kk Kk Kk Kk Kk K
*ox ISPF processor ended abnormally *ox
* Kk * Kk
* x * k*
o Reason code *ox
E L
* x * ok
* Kk * ok
* * NOTE: The ABEND and REASON codes displayed above are *ox
*ox HEXADECIMAL values for "SYSTEM" abends and DECIMAL *ox
o values for "USER" abends. *ox
* ok * ok
* * Enter HELP command for list of common ABEND codes. x ox
* * Press ENTER key for additional DIAGNOSTIC information. *ox
* * Enter END command to display primary option menu. *ox
* x * kx
* x Kk * * *x *x * * *x *x * * * *x * * * *x * * * *x *x * * *x *x * * *x *x * *
* k k ok ok Kk Kk Kk Kk Kk *x Kk Kk Kk Kk Kk Kk Kk *k * * * *x *k Kk *k *k * * * * * * K

Command ===>

Fl=Help F2=8plit F3=Exit F9=Swap Fl2=Cancel

Figure 90. Error Recovery Panel (ISPPRS1)

If you are not running in an MVS/XA environment, the reason code will be blank.
If you are running in an MVS/XA environment and the SDWA (System Diagnostic
Work Area) Reason Code is not supplied, that is, the SDWA reason code flag bit is
OFF, the Reason Code panel field will be blank. If the abend code documentation
indicates that the reason code is in a particular register, see the contents of that
register, which can be displayed on the Additional Diagnostic Information panel as
shown in Ei

If you enter HELP, the panel shown in Eigure 91 on page 33d displays a list of the

common abend codes.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic Information

]
=]

EE

TUTORIAL

other products,

COMMON ABEND CODES

The following list contains some common ABEND codes.
about these codes and for information about other abend codes,
appropriate MVS completion code manual.
refer to the appropriate product’s message library.

For more information
see the
For abends resulting from

001 - I/O ERROR 706 NON-EXECUTABLE PROGRAM
002 - I/0 INVALID RECORD 804 INSUFFICIENT VIRTUAL STORAGE
004 - OPEN ERROR 806 UNABLE TO LOAD (LINK ETC) PROGRAM
008 - I/O SYNAD ERROR 80A INSUFFICIENT VIRTUAL STORAGE
013 - OPEN ERROR 878 INSUFFICIENT VIRTUAL STORAGE
028 - PAGING I/O ERROR 737 I/0 ERROR
0CX - PROGRAM CHECK EXCEPTIONS: Al4d I/0 ERROR
0Cl - OPERATION, B37 INSUFFICIENT DASD SPACE
0C4 - PROTECTION / ADDRESSING, D37 INSUFFICIENT DASD SPACE
0C5 - ADDRESSING, E37 INSUFFICIENT DASD SPACE

TUTORIAL

COMMAND ===>

Fl=Help
Fl0=Left

F2=Split
F11=Right

F3=Exit
Fl2=Cancel

F7=Backward F8=Forward

F9=Swap

Figure 91. Common Abend Codes (ISP93010)

To return to the Error Recovery panel, enter end from the Common ABEND panel.

If you press Enter from the Error Recovery panel, the panel shown in w is

displayed:

=]

EE

ISPF Release Level

Module name
Entry point address

PSW

Register content:

RO 00806000 R1
R4 00000058 R5
R8 0009DD30 R9
R12 00000000 R13

Command ===>

4.1

System Abend code
Reason code

Additional Diagnostic Information

806

Not specified

000000

00

FF850008 4000DBSE

80806000
008FD568
008C7850
008C7850

R2 000526E0
R6 008C7850
R10 81005342
R14 810056C6

Enter HELP command for list of common ABEND Codes.
Enter END command to display primary option menu.

R3 0009DDA0
R7 000526E0
R11 00000C00
R15 0000001C

Fl=Help F2=Split F3=Exit

F9=Swap

Fl2=Cancel

Figure 92. Additional Diagnostic Information (ISPPRS2)

Entry point, PSW, and register values are in hexadecimal. Abend code and reason
code are in hexadecimal for system abends and in decimal for user abends.
Meanings for the entries on the Additional Diagnostic Information panel are:

Appendix C. Diagnostic Tools and Information

339

Diagnostic Information

340

Abend code
Abend completion code, identified on the panel as “user” or “system”.

Reason code
Component reason code or return code associated with the abend.

ISPF Release Level
ISPF version/release/modification level.

Module Name
Name of abending program or *NOT SPECIFIED* if no name is available.

Entry Point Address
Entry point address of abending program.

PSW Program-Status Word at time of error.

Register content
General Purpose register content at time of error.

If the Recovery Termination Manager (RTM) could not get storage for the System
Diagnostic Work Area (SDWA) or an error occurred within the error routine, all
fields on this panel will contain 0’s, with the exception of the abend code and ISPF
release level. Those fields will contain the correct data.

You can enter the HELP command from this panel as well to display the list of
common abend codes. Information associated with an abend is available from the

ISPF log file.

Pressing the END function key returns you to the primary option menu.

ISPF Statistics Entry in a PDS Directory

The following is the format of the information that ISPF writes to the PDS
directory to maintain statistics for a member. If you suspect the statistics data has
been corrupted, you can compare the existing entry against these formats to help
in problem determination.

Byte Description and Format

1 Version number, in hexadecimal format. Value is between X'01' and X'99'.
2 Modification level, in hexadecimal format. Value is between X'00' and X'99'.
3 Flags:

Bit1 SLCM indicator. SCLM uses this to determine whether the member
and any related SCLM information are still in sync.

* ON means the member was last edited by SCLM, the PDF
Software Configuration and Library Manager.

* OFF means the member was somehow processed outside SCLM.

Bit 2-8
Reserved for future ISPF use.

4 The seconds portion of the time last modified, in packed decimal format.
5-8 Creation date:
Byte 5 Century indicator.

Byte 6-8
Julian date, in packed decimal format

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

9-12

13-14

15-16
17-18
19-20
21-27
28-30

Diagnostic Information

Date last modified:
Byte 9 Century indicator.

Byte 10-12
Julian date, in packed decimal format

Time last modified, in packed format:

Byte 13
Hours, in packed decimal format

Byte 14
Minutes, in packed decimal format

Current number of lines, in hexadecimal format
Initial number of lines, in hexadecimal format
Number of modified lines, in hexadecimal format
Userid, in character format

Reserved for future ISPF use

Common Problems

Using ISPF

This section contains some common error messages that may be encountered while

using ISPE. Error resolutions and explanations are also included.

Messages

* IKJ565001 COMMAND NOT FOUND

If a command processor exists only in LPA, there must be an entry in the
ISPTCM for the command processor. Please refer to ISPF Planning and
Customizing for more details on customizing the ISPF TSO command table.

IKJ568611 FILE ddname NOT FREED, DATA SET IS OPEN

If the LIBRARY parameter is used with a table service, the user is not able to
free the ddname for the table library pointed to by the LIBRARY parameter. ISPF
keeps this library open until a new ddname is used in the LIBRARY parameter
with another table service. ISPF functions in this manner for performance
reasons.

Issuing a table service with a LIBRARY parameter containing a ddname that
does not exist causes the previous library to be closed and therefore allows the
user to free the previous ddname. Use of CONTROL ERRORS RETURN may be
used to guard against a severe error as a result of a ddname not existing.

For example:

ALLOC FILE(DD1) DATASET('USERID.YOUR.TABLES') SHR
ISPEXEC TBOPEN MYLIB LIBRARY(DD1)

/*ISPF services against your tablex/

ISPEXEC TBCLOSE MYLIB LIBRARY(DD1)

ISPEXEC CONTROL ERRORS RETURN

ISPEXEC TBOPEN JUNK LIBRARY(DDJUNK) /*non-existent table in a =*/
/*non-existent Tibrary */

ISPEXEC CONTROL ERRORS CANCEL

FREE F(DD1)

» ISPP150

Panel 'name’ error—At least one of the CLEAR names listed is not a panel field
name. or ISPP121

Appendix C. Diagnostic Tools and Information 341

Diagnostic Information

342

Panel 'name’ error—Panel definition too large, greater that screen size.

when entering KEYLIST, when requesting field-level help in ISPF panels, or
when displaying panels created using DTL.

These messages are often caused by having a GML library in the ISPPLIB
concatenation or by having GML source code in the panel library. Check your
ISPPLIB concatenation to make sure that the ISPF-supplied GML library is not
concatenated first. The ISPF-supplied GML library should not be in any of the
ISPF library concatenations. Make sure that the libraries in your ISPPLIB
concatenation do not contain GML source code.

ISPT036 'Table in use—"table service’ issued for table "table name’ that is in use,
ENQUEUE failed.

This message frequently occurs when batch jobs that use ISPF services run
concurrently. This occurs because most batch jobs allocate a new profile each
time they run. ISPF issues a TBOPEN against ISPPROF DD card for member
ISPSPROF. The TBOPEN fails since ISPPROF does not contain this member. ISPF
then issues a TBOPEN against ISPTLIB to copy the default ISPSPROF from
ISPTLIB to ISPPROFE.

If the first data set in the ISPTLIB concatenation sequence is the same for two
batch jobs running concurrently, message ISPT036 is issued. To make sure that
this condition does not occur, the first data set in the ISPTLIB concatenation
should be user unique. For example, ’sysuid..ISPPROF” would be a user unique
data set, which could be used as the first data set concatenated to the ISPTLIB
DD.

For the same reasons, this problem can also occur when two users logon to ISPF
for the first time if they have the same data set concatenated first in the ISPTLIB
concatenation.

ISPTO016, ISPT017, and other I/O Errors

ISPF has various messages that reference 1/O errors on either GET or PUT
(READ and WRITE macros) such as message ISPT017. These errors are typically
caused by concatenation problems on one of the ISPF libraries.

Allocating data sets that do not have consistent DCB parameters in ISPF library
concatenations often causes these messages. Also, ISPTABL, ISPFILE, and
ISPPROF are used for output and therefore must have only a single data set
allocated to their ddnames.

— For I/0 errors during panel services, check your ISPPLIB concatenation for
inconsistent DCBs.

— For I/O errors during file tailoring services, check your ISPSLIB concatenation
for inconsistent DCBs and make sure that only one data set is allocated to
ddname ISPFILE.

— For I/O errors during table services, check your ISPTLIB concatenation for
inconsistent DCBs and make sure that only one data set is allocated to
ddname ISPTABL.

I/0O error messages cannot be issued when there is a problem with the ISPMLIB
concatenation since messages cannot be located due to the I/O error. Message
CMG999 occurs when there is an 1/O error due to an ISPMLIB concatenation
problem.

CMG999
CMG999 is issued with an appropriate description of the error condition for any

problem with accessing a message. Refer to ISPF Dialog Developer’s Guide and
Reference for further information on how to define a message.

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic Information

Unexpected Output

 ISPF services do not pick up updated copies of messages or panels.

When not in TEST mode, the most recently accessed panel and message
definitions are retained in virtual storage for performance reasons. If you have
modified a panel or message file, using TEST mode ensures that the latest copy
of each message or panel is accessed. Refer to ISPF Services Guide for more
information on executing ISPF in TEST mode.

e ISPF commands such as WINDOW, COLOR, CUAATTR, EXIT, CANCEL,
ACTIONS, KEYSHELP, KEYLIST, EXHELP, FKA, and ISPDTLC are not
recognized as valid commands, or function keys defined as these commands do
not function properly.

The user issuing these commands or pressing the function keys defined as these
commands has a private copy of ISPCMDS in the ISPTLIB concatenation. The
user’s private copy of ISPCMDS is missing some or all of the new commands
supplied in the new command table, ISPCMDS.

Users experiencing this problem should either replace their private copy of
ISPCMDS with the z/OS V1R2.0 ISPF supplied copy, or update their private
ISPCMDS with the missing commands.

Abend Codes and Information

ISPF controller and processor task abends are controlled by STAE and STAI exit
routines and by ISPF execution modes set using the ISPSTART TEST parameters.

Under normal conditions (that is, when processor and controller dumps have not
been requested by specifying the ISPSTART TEST command):

* When a processor task abends:
— No dump is taken.
— The controller reattaches the processor main drive (ISPPMD).
— The primary option menu is redisplayed for that logical screen.

* When the controller task abends:
— ISPF terminates with *** ISPF MAIN TASK ABEND *** message.
— Control returns to TSO.
— Pressing Enter causes a dump to be taken if a dump data set has been
allocated.

The controller and processor tasks issue the ABEND system service and allow
dumps under certain situations. The ISPF modules that issue ABENDs and their
associated codes and reasons are listed below:

ABENDOCT1 in various common ISPF subroutines
In several ISPF modules, an invalid operation code of (X'00") is executed to
force an abend at the point that an unexpected condition occurs. Contact
IBM support if this condition occurs within an ISPF module.

ABENDO0C4 in ISPDVCGT, ISPDVCPT, or ISPDVCFD
These abends are often caused by mismatched VDEFINE and VDELETE
services in a user’s program. The VDEFINE service gives ISPF
addressability to user storage. This storage is used by variable services any
time the variable that has been established by the VDEFINE service is
referenced. If this storage is released back to the system, an ABEND0C4
may occur depending on whether the storage is still accessible. Following
are two common scenarios that often show these abends:

* A program establishes a variable in a called subroutine using the
VDEFINE service and subsequently uses an ISPF service that references

Appendix C. Diagnostic Tools and Information 343

Diagnostic Information

this variable in another routine. If the called subroutine was dynamically
loaded and therefore released its storage, an ABENDO0C4 could occur
when the subroutine references a VDEFINEd variable.

* A program establishes a variable in a called subroutine using the
VDEFINE service and then calls another program without using the
SELECT service. Then the called program VDEFINEs a variable with the
same name, but does not VDELETE it on exit. If the calling program
references that variable after the called program returns control to it, an
ABENDOC4 can occur. Since a VDELETE has not been done, ISPF
services still reference the variable VDEFINEd by the called program.

If the program intent is to use the same variable in the main and called
routines, the variable should be VDEFINEd only in the main routine. If the
program intent to isolate a variable to be used only in the routine in which
it is VDEFINEd, then the program should also VDELETE the variable
before it ends. To diagnose whether the user application has this problem,
a function trace on VDEFINE, VDELETE, and the SELECT services (Option
7.7.1) is very helpful.

Abend codes 111 or 222

To produce these abends, the user must be in test mode and request
processor dumps by entering one of the following commands on the ISPF
command line. With exception of the user completion code, both
commands function in the same manner.

ABEND
Terminates ISPF with user completion code 111.

CRASH
Terminates ISPF with user completion code 222.

Abend code 908

ZISPFRC value was not valid

Abend code 920

ISPSTART command syntax was not valid

Abend code 985

An attempt was made to start a GUI in batch mode, but no workstation
connection was made.

Abend code 987

An attempt was made to start GUI with GUISCRW or GUISCRD and the
GUI intitialization failed.

Abend code 988

Invalid TSO environment. Refer to ISPF Planning and Customizing for the
proper TSO version.

Abend code 989

The ISPF C/S component window was closed while still running ISPF in
GUI mode

Abend code 990

An error occurred running in batch mode. If ZISPFRC has not been set
peviously, and ISPF encounters a severe error that terminates the product,
then 990 is set.

344 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic Information

Abend code 997 (or X’3E5’)

A TPUT returned a return code other than 0 or 8. A message is displayed
and an attempt is made to redisplay the full screen. If the redisplay fails
twice, this abend is issued.

Abend code 998 (or X’3E6’)

An ISPF severe error that occurs while not in CONTROL ERRORS
RETURN mode and before ISPF is fully initialized. ISPF is considered to be
fully initialized when the Enter key on the primary option menu has been
processed without a severe error occurring.

Abend code 999 (or X’3E7’)

This abend is issued for the following reasons:

* No function pool is established for a command processor.

For example, a command processor that uses ISPF services is invoked
using option 6 or SELECT CMD, but the command processor does not
have a function pool. The user needs to have an entry for the command
processor in the ISPTCM with the X'40" flag set on. The X'40" flag
indicates that the command requires a function pool. Refer to ISPF
Planning and Customizing for more information on customizing the
ISPTCM.

An error occurs while another error is already being processed.

ISPF issues the abend code 999 in this case to protect against an infinite
loop.

An error occurred during ISPF initialization.

For example:

— An I/0O error occurred due to ISPF library allocations such as
ISPSLIB, ISPPLIB, ISPMLIB, and so forth, containing inconsistent or
incorrect DCB attributes.

— An ISPF library allocation does not contain the required ISPF libraries
in its concatenation. For example, the ISPMLIB contains user product
libraries but not ISPF libraries.

Terminal I/0 Error Codes

Below is a list of terminal I/O error codes that you may see while using ISPFE.

* ISPF screen output error code

41

TPUT return code not equal to 0 or 8

* ISPF screen input error code

21
22
23
24
25
26
28
31

TGET return code other than 0, 4, or 8.

Input stream size greater than input buffer size or 0.
Unknown attention identifier (AID).

Invalid input AID.

Input stream size invalid for input AID.

Input cursor location not within physical screen.

First byte of input buffer field not an SBA (invalid input data).

Byte preceding the physical screen field is past the end of the physical
screen (input data from invalid screen position).

Appendix C. Diagnostic Tools and Information 345

Diagnostic Information

32 Byte preceding the physical screen field is not an input attribute (input
data from invalid screen position).

33 Physical screen field not defined on panel (input data from invalid
screen position).

51 Physical screen field attribute not found in logical screen.

52 Byte preceding logical screen field is not an input attribute.

55 Physical screen size is greater than corresponding logical screen size.

Notes:

. The physical screen size is determined by ISPF during initialization.
2. The input buffer size is a variable based on the physical screen size.

3. The logical screen is the same size as the physical screen, and is the size that

the processor task uses for screen I/O. When the 3290 is running in 62 X 160
partition mode, the SPLITV command makes the logical screen width equal to
80. When a 3278 mod 5 is running in standard mode, the logical screen size is
24 X 80.

. Only part of the logical screen appears on the physical screen when ISPF is

running in split-screen mode. When the 3290 is running in 62 X 160 partition
mode, the entire logical screen may be visible, depending on the position of the
horizontal split line.

. An input buffer field extends from an SBA to either the next SBA or the end of

the input buffer.

. A physical screen field extends from the location indicated in the input buffer

SBA to the location of the next attribute byte in the physical screen.

Register Linkage Conventions

346

ISPF uses standard linkage conventions:
* SELECT PGM(program-name)

REGISTER
CONTENTS
1 Points to the address of the parameter data (from the PARM keyword)

field (half-word length) followed by the data
2-12 Not used

13 72-byte save area
14 Return address
15 Entry address / Return code on exit
ISPF EXITS / Call to ISPLINK
REGISTER
CONTENTS
1 On entry, points to a parameter list; each address in the list in turn

points to a parameter. On return to the caller of ISPLINK, the user’s
parameter list starts at the second parameter. ISPF has inserted a
parameter in front of the user’s parameters for ISPF use.

2-12 Not used
13 72-byte save area
14 Return address

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic Information

15 Entry address / Return code on exit

* SELECT CMD(cmdname) where cmdname is a program that will be attached as
a command processor by ISPF:

REGISTER
CONTENTS
1 Points to a CPPL (Command Processor Parameter List) which is a list of

four addresses that point respectively to: Command buffer, UPT, PSCB,
ECT. See the TSO programming services manual for descriptions of these
parameters.

2-12 Not used

13 72-byte save area
14 Not applicable

15 Return code on exit

Usually when an abend occurs within ISPF code, register 12 points to the entry
point of the abending CSECT.

Obtaining Message IDs

In order to obtain the message ID associated with an error message in ISPF, you
need to be in ISPF TEST mode.

ISPF is in TEST mode if:

* ISPF is invoked with the TEST, TESTX, TRACE, or TRACEX parameter specified
on the ISPSTART, PDF, or ISPF command, or

* Restore TEST/TRACE option is not selected in option 0 and you go into option
7, Dialog Test, at some point in your current ISPF session.

If you are not in TEST mode, split the screen, enter option 7, Dialog Test, and swap
back to the screen containing the error.

You can use the either of the following methods to get the message ID:

¢ Enter print on the panel displaying the error message. The message ID, along
with the displayed message text and screen output, appears in the LIST data set.
The LIST data set can be printed using the LIST command.

* With the short message displayed:

1. Press the function key assigned to Help (default is F1) or type help on the
command line. This displays the long message text for the error.

2. Press the function key assigned to Help or type help on the command line
once more to display the Tutorial panel associated with the error. The bottom
lines of the Tutorial panel contain fields that list the current panel name, the
previous panel name, and the message ID. The value following LAST MSG= is
the message ID associated with the error.

Installation, Maintenance, and Migration Diagnostics

The information following is representative of common situations a user may
encounter during installation, maintenance, and migration.

Appendix C. Diagnostic Tools and Information 347

Diagnostic Information

Common Installation and Maintenance Problems

Problem:
Unpredictable results such as ABEND0C4s, ABENDOC1s, and so forth,
upon invocation of ISPF.

Cause: This problem can occur when internal LINKs and LOADs are used in
conjunction with the ISPF ISPLLIB DCB.

Solution:
When using STEPLIB to test new maintenance, releases, or versions of
products and an ISPLLIB is allocated, data sets allocated to STEPLIB
should also be allocated to ISPLLIB.

Problem:
New levels of code residing in STEPLIB do not appear to be executed. This
includes changes to customer applications, new levels of code, and changes
made by PTFs, for example.

Cause: This problem can occur when internal LINKS and LOADs are used in
conjunction with the ISPF ISPLLIB DCB.

Solution:
When using STEPLIB to test new maintenance, releases, or versions of
products and an ISPLLIB is allocated, data sets allocated to STEPLIB
should also be allocated to ISPLLIB.

Problem:
Abends occur when invoking or exiting HELP, KEYS, or ISPPREP.

Cause: An older level of ISPF exists in LPA or LINKLIB; an ISPLLIB or STEPLIB is
used to allocate libraries for the new release of ISPF; and a LIBDEF for
ISPLLIB that does not include the new level of ISPF libraries has been
issued.

Not all of ISPF is loaded at initialization, for example, ISPTUTOR is linked
when HELP is requested. The LIBDEF of ISPLLIB results in the older level
of any modules that are not loaded on ISPF entry to be picked up from
LPA or LINKLIB due to internal search orders. For further information,
refer to the LIBDEF command in ISPF Services Guide

Solution:
Include the new level of ISPF in any LIBDEFs issued for ISPLLIB.

Problem:
ABENDS806 for ISPLINK or ABENDOC1 in user application.

Cause: During installation, the SMP/E install logic for ISPF deletes the existing
ISPLINK load module.

Solution:
Relink-edit ISPLINK to user application.
Migration from Version 2 and Version 3 to Version 4.2

Problem:
ABENDS806 received for program ISRYXDR.

Cause: The Dialog Test Facility is now part of ISPF and is invoked by
PGM(ISPYXDR). The Dialog Test Facility was part of ISPF/PDF and was
previously invoked using PGM(ISRYXDR) from the ISR@PRIM panel.

348 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Diagnostic Information

Solution:
Use the ISP@PRIM or ISR@PRIM panel supplied with this release of ISPF
or modify your own customized ISP@PRIM or ISR@PRIM panels. Change
the dialog test selection to invoke ISPYXDR rather than ISRYXDR as
shown below:
"PGM(ISPYXDR) PARM(ISR) NOCHECK' /+ ISR@PRIM x/

or
'"PGM(ISPYXDR) PARM(ISP) NOCHECK' /+ ISP@PRIM */

Problem:
Abends in load modules IGC0009C and IGC0009D.

Cause: Failure to install ISPF in the same zone as TSO/E will result in the
supplied ISPF SVC 93 and SVC 94 exits (ISPSC93, ISPSC94), creating SVC
93 and SVC 94 load modules without the proper link edit information.

Failure to use the correct version of either IGC0009C or IGC0009D or both.

Solution:
TSO/E, ISPE, and ISPF/PDF must all be installed in the same zone. Verify
that the correct versions are copied from a test system to the production
system.

Problem:
ISPP150 PANEL 'name” ERROR NO ")END” FOUND BEFORE REACHING
END OF FILE

or

SPP121 PANEL 'name’ ERROR PANEL DEFINITION TOO LARGE,
GREATER THAN SCREEN SIZE when entering KEYLIST, requesting field
level help in ISPF panels, or when displaying panels created using DTL.

Cause: These messages are often caused by having a GML library in the ISPPLIB
concatenation, or by having GML source code in the panel library.

Solution:
Check your ISPPLIB concatenation to make sure that the ISPF-supplied
GML library is not concatenated first. The ISPF-supplied GML library
should not be in any of the ISPF library concatenations. Make sure that the
libraries in your ISPPLIB concatenation do not contain GML source code.

Problem:
ISPF Version 4 specific commands such as RESIZE, SETTINGS, TSOCMD,
START, WS, TUTOR, ISPFVAR, ZKEYS, DTEST, STATUS, and so on, are
not recognized as valid commands or function keys defined as these
commands do not function properly.

Cause: Users issuing these commands or pressing the function keys defined as
these commands have a private copy of ISPCMDS in their ISPTLIB
concatenation. Users’ private copy is missing some or all of these supplied
commands, or they may be using a command table from a previous
version or release of ISPF.

Solution:
Users experiencing this problem should put their non-ISPF commands that
are currently in their private copy of the ISPCMDS table into a user or site
command table, and delete their ISPCMDS table.

Appendix C. Diagnostic Tools and Information 349

Diagnostic Information

Problem:
Receiving error messages such as: 'PROFILE TABLE NOT FOUND,
UNABLE TO ACCESS ISRPROF TABLE FOR VAR "ZERRMSG” or
ABEND3E7 or ABENDU999.

Cause: The profile data set may run out of directory space as Version 3 adds more
members to the profile, or the logon allocation of ISPTLIB may be pointing
to an old Version 2 or Version 3 table library. Another common cause of
this symptom is that an application that link-edits the ISPF load module
ISPTASK into it has not been relink-edited after installing a new version of
ISPTASK.

Solution:
Add more directory blocks to the profile data set and ensure that the
Version 4.2 table library containing ISPKEYS is in the ISPTLIB
concatenation. Verify that the application that link-edits ISPTASK is
relink-edited after a new release of ISPF is installed or after maintenance
that updates ISPTASK is installed.

Problem:
Attempting to start an ISPF session with a workstation connection using
ISPF C/S causes error messages like: "CSV003I REQUESTED MODULE
LSCSIO NOT FOUND’ +LSCX012 Unable to load runtime 1/O routines,
execution cannot continue.

Cause: Library SISPSASC is not in the usual MVS load module search order. This
library is not searched using the ISPLLIB allocation. It must be in STEPLIB
or LNKLST.

Solution:
Put the SISPSASC library in STEPLIB or LNKLST. For more information
about SISPSASC, refer to ISPF Planning and Customizing

350 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Appendix D. Dialog Variables

This appendix describes the ISPF dialog variables.

The following table lists the dialog function pool variables that are both read from
and written to by several of the PDF library access services. The variables are listed
in alphabetical order.

The first column lists the variable name. The second column indicates the
variable’s type, which corresponds to the format parameter of the ISPF VDEFINE
service. The third column specifies the variable’s length, which corresponds to the
length parameter of the VDEFINE service.

The fourth column lists the PDF services that either read from or write to the
variable. An R in parentheses after a service name indicates that the service, when
called, reads from the given variable. A W in parentheses after a service name
indicates that the service, when called, writes to the given variable. All variables
are available to a dialog unless otherwise indicated.

The last column contains a brief description of the contents of the variable and any
restrictions on the value of the variable.

Variable Name Format Length Service (Access) Description

ZCMD Char 256 LMMDISP(W) Primary Command field from
member list panel if the
command is not a valid ISPF or
PDF primary command.

ZDLBLKSZ Char 5 LMDLIST(W) Block size.

ZDLCDATE Char 10 LMDLIST(W) Creation date.

ZDLDEV Char 8 LMDLIST(W) Device type.

ZDLDSNTP Char 8 LMDLIST(W) DS name type ('PDS’,
‘LIBRARY’, or *).

ZDLDSORG Char 4 LMDLIST(W) Data set organization.

ZDLEDATE Char 10 LMDLIST(W) Expiration date.

ZDLEXT Char 3 LMDLIST(W) Number of extents used.

ZDLLRECL Char 5 LMDLIST(W) Logical record length.

ZDLMIGR Char 3 LMDLIST(W) Whether the data set is migrated
(“YES’ or ‘NO’).

ZDLRDATE Char 10 LMDLIST(W) Date last referenced.

ZDLRECFM Char 5 LMDLIST(W) Record format.

ZDLSIZE Char 6 LMDLIST(W) Data set size in tracks.

ZDLSPACU Char 10 LMDLIST(W) Space units, one of the
following: CYLINDERS,
MEGABYTES, KILOBYTES,
BYTES, BLOCKS or TRACKS.

ZDLUSED Char 3 LMDLIST(W) Percentage of used tracks or
pages (PDSE).

ZDLVOL Char 6 LMDLIST(W) Volume serial.

© Copyright IBM Corp. 1980, 2001

351

Dialog Variables

Variable Name

Format

Length

Service (Access)

Description

ZDSN

Char

44

LMMDISP(W)

Name of the first or only data
set in the concatenation of the
member list being displayed.
This variable is only available
for member list panels.

ZDST

Char

54

BRIF (W) EDIF (W)

Title line data name for EDIF
and BRIF.

ZEDBDSN

Char

44

EDIT (R) EDREC(W)

Backup data set name for
standard edit recovery.

ZEDITCMD

Char

Any EDIT macro

The last primary command
entered in Edit.

ZEDROW

Fixed

EDIT (R) EDREC(W)

Row number of entry in
standard edit recovery table.

ZEDSAVE

Char

Data_changed EDIT
macro command

END command will save data
(SAVE or NOSAVE).

ZEDTDSN

Char

44

EDIT (R) EDREC(W)

Target data set name for
standard edit recovery.

ZEDTMCMD

Char

Any Edit macro

The edit command entered that
caused an edit macro to run.
Can be the macro name or other
name is the edit DEFINE
command was used to define an
alias.

ZEDTMEM

Char

EDIT (R) EDREC(W)

Target member name (if
applicable) for standard edit
recovery.

ZEDTRD

Char

EDIT (R) EDREC(W)

Volume serial of target data set
for standard edit recovery.

ZEDUSER

Char

EDIT (R) EDREC(W)

User data table extension for
standard edit recovery.

ZEIBSDN

Char

54

EDIF (R) EDIREC(W)

Backup data name for EDIF edit
recovery.

ZEIROW

Fixed

EDIF (R) EDIREC(W)

Row number of entry in EDIF
edit recovery table.

ZEITDSN

Char

54

EDIF (R) EDIREC(W)

Target data name for EDIF edit
recovery.

ZEIUSER

Char

EDIF (R) EDIREC(W)

User data table extension
variable for EDIF edit recovery.

ZERRALRM

Char

ALL(W)

The value YES if an alarm was
specified in the message
definition; otherwise, the value
NO. Set when ISPF services
issue a return code of 8 or
greater.

ZERRHM

Char

ALL(W)

The name of a Help panel, if one
was specified in the message
definition. Set when ISPF
services issue a return code of 8
or greater.

352 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Dialog Variables

Variable Name Format Length Service (Access) Description
ZERRLM Char 512 ALL(W) Long-message text in which
variables have been resolved. Set
when ISPF services issue a
return code of 8 or greater.
ZERRMSG Char 8 ALL(W) Message ID. Set when ISPF
services issue a return code of 8
or greater.
ZERRSM Char 24 ALL(W) Short-message text in which
variables have been resolved. Set
when ISPF services issue a
return code of 8 or greater.
ZGRPLVL Char 8 LMHIER (W) ISPF table variable that contains
the level of this ISPF library in
the controlled hierarchy.
ZGRPNME Char 8 LMHIER (W) ISPF table variable that contains
the ISPF library group name.
ZLAC Char 2 LMMDISP(W) Authorization code of the
LMMFIND(W) member.
LMMLIST(W)
ZLALIAS Char 8 LMMDISP(W) Name of the real member of
LMMFIND(W) which this member is an alias.
LMMLIST(W)
ZLAMODE Char 3 LMMDISP(W) AMODE of the member.
LMMFIND(W)
LMMLIST(W)
ZLATTR Char 20 LMMDISP(W) Load module attributes. Refer to
LMMFIND(W) the ISPF Services Guide.
LMMLIST(W)
ZLCDATE Char 8 LMMADD(R) Date on which the specified
LMMDISP(W) member was created. A character
LMMFIND(W) string in the national format. For
LMMLIST(W) example, yy/mm/dd or
LMMREP(R) mm/dd/yy. If no value exists
for this variable, the PDF
component will set the value to
blanks.
ZLC4DATE Char 10 LMMADD(R) Date on which the specified
LMMDISP(W) member was created, in
LMMFIND(W) 4-character year format. A
LMMLIST(W) character string in the national
LMMREP(W) format. For example,
yyyy/mm/dd or mm/dd/yyyy.
If no value exists for this
variable, the PDF component
will set the value to blanks.
ZLCNORC Fixed 4 LMMADD(R) Current number of records in the
LMMDISP(W) specified member. A number
LMMFIND(W) from 0 to 65 535. If no value
LMMLIST(W) exists for this variable, the PDF
LMMREP(R) component will set the value to

blanks.

Appendix D. Dialog Variables 353

Dialog Variables

Variable Name Format Length Service (Access) Description
ZLINORC Fixed 4 LMMADD(R) Number of records in the
LMMDISP(W) specified member when it was
LMMFIND(W) first created. A number from 0 to
LMMLIST(W) 65 535.
LMMREP(R)
ZLLIB Fixed 4 LMMDISP(W) Position of the specified member
LMMFIND(W) in the concatenated data sets. A
LMMLIST(W) number from 1 to 4.
ZLMDATE Char 8 LMMADD(R) Date on which the specified
LMMDISP(W) member was last modified. A
LMMFIND(W) character string in the national
LMMLIST(W) format. (For example, yy/mm/dd
LMMREP(R) or mm/dd/yy.) If no value exists
for this variable, the PDF
component will set the value to
blanks.
ZLM4DATE Char 10 LMMADD(R) Date on which the specified
LMMDISP(W) member was last modified, in
LMMFIND(W) 4-character year format. A
LMMLIST(W) character string in the national
LMMREP(W) format. (For example,
yyyy/mm/dd or mm/dd/yyyy.) If no
value exists for this variable, the
PDF component will set the
value to blanks.
ZLMEMBER Char 8 LMMDISP(W) Name of the current selected
member.
ZLMNORC Fixed 4 LMMADD(R) The number of records that have
LMMDISP(W) been modified in the specified
LMMFIND(W) member. A number from 0 to
LMMLIST(W) 65 535.
LMMREP(R)

ZILMOD Fixed 4 LMMADD(R) Modification level of the
LMMDISP(W) specified member. A number
LMMFIND(W) from 0 to 99.
LMMLIST(W)
LMMREP(R)

ZLMTIME Char 5 LMMADD(R) Time when the specified member
LMMDISP(W) was last modified. A character
LMMFIND(W) string in the form hh:mm.
LMMLIST(W)
LMMREP(R)

ZILMSEC Char 2 LMMADD(R) Seconds value of last modified
LMMDISP(W) time.
LMMFIND(W)
LMMLIST(W)
LMMREP(R)

ZLPDSUDA Char 62 LMMDISP(W) A character string containing the
contents of the user data area in
the PDS directory entry of the
specified member if the
member’s statistics are not in
PDF format.

354 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Dialog Variables

Variable Name Format Length Service (Access) Description

ZLRMODE Char 3 LMMDISP(W) RMODE of the member.
LMMFIND(W)
LMMLIST(W)

Z1SIZE Char 8 LMMDISP(W) Load module size (in Hex).
LMMFIND(W)
LMMLIST(W)

ZLTTR Char 6 LMMDISP(W) TTR of the member.
LMMFIND(W)
LMMLIST(W)

ZLUSER Char 7 LMMADD(R) User ID of user who last
LMMDISP(W) modified the specified member.
LMMFIND(W)
LMMLIST(W)
LMMREP(R)

ZLVERS Fixed 4 LMMADD(R) Version number of the specified
LMMDISP(W) member. A number from 1 to 99.
LMMFIND(W) If no value exists for this
LMMLIST(W) variable, the PDF component
LMMREP(R) will set the value to blanks.

ZMEMCNT Char 8 LMMLIST(W) Number of members in the
member list.

ZMLCOLS Char 80 LMMDISP(W) A character string that contains
the member statistics column
headings that appear on the
member list panel display. This
variable is only available for
member list panels.

ZMLCR Fixed 4 LMMDISP(W) The relative number in the
member list of the member that
appears at the top of the
member list display. Its range is
from 1-99 999. This variable is
only available for member list
panels.

ZMLTR Fixed 4 LMMDISP(W) Number of members in the
member list. Its range is from
1-99 999. This variable is only
available for member list panels.

ZSCALIAS Char 1 LMINIT(W) Data set name is an alias ('Y’ or
'N).

ZS5CLM Char 1 LMMDISP(W) Last updater of member. Y’

LMMFIND(W) indicates SCLM was last
LMMLIST(W) updater. ‘N’ indicates PDF.

ZSCMVOL Char 1 LMINIT(W) Data set name is multivolume
(Y or 'N).

ZUSERMAC Char 9 EDIT(R) EDIF(R) Application-wide edit macro.

VIEW(R) VIIF(R)

2. Length limited only by ISPF restrictions on the length of table extension variables.

Appendix D. Dialog Variables 355

Dialog Variables

PDF Non-Modifiable Variables

The following read-only variables are available to PDF component dialogs:

Variable Name Format Length Service (Access) Description

ZCUNIT Char 8 none Unit name to be used for
temporary allocations. This
variable comes from ISPF
configuration table keyword
PDF_DEFAULT_UNIT.

ZCUSIZE Fixed 4 none Number of kilobytes available
for use by the edit UNDO
command when running in
SETUNDO STORAGE mode.
This variable comes from ISPF
configuration table Keyword
UNDO_STORAGE_SIZE. See
ISPF Edit and Edit Macros for
further information.

ZICFPRT Char 3 none ICF indicator. "YES’ - All
foreground print requests will
be processed using ICF. 'NO’ -
ICF will not be used. This
variable comes from ISPF
configuration table keyword
PRINT_USING_ICE.

ZPDFREL Char 8 none PDF version number in the

form "PDF x.y ". The x.y is a

sequence number. If x.y:

* <=4.2 means the x.y
version.release of PDF

¢ = 4.3 means ISPF for OS/390
Release 2

e =44 means PDF 4.2.1 and
ISPF OS/390 Release 3

ZSESS Char 8 none Session manager indicator. "Y" -
Use session manager panels in
options 4 and 6. 'N’ - Use
standard panels in options 4
and 6. This variable comes from
ISPF configuration table
keyword
USE_SESSION_MANAGER.

ZSWIND Char 4 none Sliding window value used by
PDF for determining the
century of 2—character years.
This variable comes from ISPF
configuration table keyword
YEAR_2000_SLIDING_RULE.
Dates less than or equal to this
value are 20xx. Dates greater
than this value are 19xx.

356 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Appendix E. System Variables

The system variables are described with type and pool information in the
following tables. The variables are also discussed with the ISPF service to which

they apply.

Commonly used system variables that a dialog can access are listed below. They
are grouped by topic.

The first column gives the name of the variable. The second column indicates in
which pool the variable resides. The following abbreviations are used:

func Function pool

shr Shared pool

prof Profile pool

any Any pool.

The third column indicates the variable’s type. The following abbreviations are
used:

in Input variable, set by a dialog to provide information to ISPF

out Output variable, set by ISPF to provide information to dialogs

non Non-modifiable output variable

i/o Both an input and an output variable.

The fourth column gives the length of the variable.

The fifth column gives a brief description of the variable.

Numeric system variables set by ISPF are right-justified and padded with zeros on
the left, if necessary. If a program function uses the VCOPY service to access the

variable, the value will be in character string format rather than in fixed binary
format.

Time and Date

Name Pool Type Len Description

ZDATE shr non 8 Current date. The format of ZDATE depends on the current national
language (see ZDATEF and ZDATEFD).

ZDATEF shr non 8 Current national language date format using the characters DD for

day, MM for month, and YY for year. ZDATEF contains the national
language delimiter. For example, DD/MM/YY, YY/MM/DD,
MM.DD.YY. For countries that use a delimiter other than a slash (/),
that delimiter replaces the slash in the date representation.

ZDATEFD shr non 8 The date format as described under ZDATEF but with the national
language convention instead of DD, MM, and YY.
ZDATESTD shr non 8 Current date with a 4-digit year (YYYY/MM/DD). The format of

ZDATESTD depends on the current national language (see ZDATEF
and ZDATEFD).

ZDAYOFWK shr non 8 The name of the day of the week.
ZDAY shr non 2 Day of month (2 characters)
ZJDATE shr non 6 Day-of-year date (format yy.ddd)

© Copyright IBM Corp. 1980, 2001

357

System Variables

Name Pool Type Len Description
ZJ4DATE shr non 8 Day-of-year date (format yyyy.ddd)
ZMONTH shr non 2 Month of year (2 characters)
ZSTDYEAR shr non 4 All 4 digits of the current year (4 characters).
ZTIME shr non 5 Time of day (format hh:mm)
ZTIMEL shr non Time of day (format hh:mm:ss:TQ —where T is tenths of a second,
and Q is hundredths)
ZYEAR shr non 2 Year (2 characters)
The current date is displayed in the appropriate format for the session language,
where DD=DAY, MM=MONTH, and YY=YEAR. For countries that use a delimiter
other than a slash (/), that delimiter replaces the slash in the date representation.
General
Name Pool |Type |Len |Description
z shr non 0 Null Variable
ZACCTNUM shr non [40° |The MVS account number specified at logon time.
ZAPLCNT shr non 4 Number of times APL invoked for a logical screen
ZAPPLID shr non 8 Application identifier
ZAPPTTL any in N/A | When running in GUI mode, the title to be displayed in the
window frame.
Note: If the panel is to be displayed in a pop-up window, the
value specified in ZWINTTL will be used instead of ZAPPTTL.
ZBDMAX shr i/o 9 Maximum number of displays that can occur within a batch mode
session
ZBDMXCNT shr non 9 Count of current number of displays in a batch mode session
ZCSs shr non 5 NLS currency symbol
ZCSDLL shr non 8 Filename of the DLL required for this level of code for the
Client/Server
ZDECS shr non 1 NLS decimal separator character
ZDEL shr i/o 1 The delimiter is used to separate stacked commands. The default
delimiter is a semicolon (;).
ZENTKTXT any in 12 | When you are running in GUI mode, the name that appears on
the Enter key push button. If this variable is not found, Enter
appears on the push button.

3. 40 is the maximum length.

358

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

System Variables

Name Pool |Type |Len Description

ZENVIR shr non 32 | Environment description:

* 1 to 8 contain the product name and sequence number, ISPF
x.y. The sequence number x.y indicates the following. If the
sequence number:

— <= 4.2 means the x.y version.release of ISPF

— = 4.3 means ISPF for OS/390 Release 2

— =44 means ISPF 4.2.1 and ISPF OS/390 Release 3

System variable ZISPFOS will contain the release of ISPF for
z/0OS on your system. System variable ZOS390RL will contain
the release of z/OS on your system.

* 9 to 16 contain the generic operating system name (MVS)

¢ 17 to 24 contain the operating system environment (TSO or
BATCH)

* 25 to 32 contain blanks and are reserved.

ZEURO shr non 1 The EURO currency symbol.

ZGUI shr non 68 Workstation address or name (in character format) if ISPSTART is
issued with the GUI parameter or if specified on the Settings GUI
invocation panel. ZGUI will be set to blank if ISPSTART is issued
without the GUI parameter or if GUI is not invoked from the
Settings panel.

ZISPFOS shr non 30 The level of ISPF code that is running as part of z/OS on your
system. This level might or might not match the z/OS level found
in ZOS390RL.

ZISPFRC shr in 8 Return code from ISPSTART-selected dialog to invoking
application.

ZKEYHELP any in 8 Keys help panel identifier. If a keys help panel is not specified on
the referenced keylist, the application can provide the keys help
panel name in this variable. If the help panel name is present as
part of the referenced keylist definition, it takes precedence over
the ZKEYHELP value. This system variable must be redefined
each time the keys help panel is to change.

ZLANG prof non 8 Session language

ZLOGO shr non 3 Indicates whether the user has requested bypass of LOGO panel.
NO indicates that the user has specified the NOLOGO keyword
at the time ISPF was called, thus, requesting that the LOGO panel
be bypassed. Otherwise, the value of the variable will be YES.

ZLOGON shr non 8 Stepname of TSO logon procedure

ZOS390RL shr non 16 Indicates the z/OS release running on your system.

ZPANELID shr non 8 The name of the currently displayed panel.

ZPFKEY shr non 4 The name of the PFkey (PFxx) in effect when the user exits the
panel. If ZPFKEY = PF0OO then no PFkey is in effect.

ZPLACE prof |i/o 7 Command line placement (ASIS or BOTTOM)

ZPREFIX shr non 8 TSO user prefix

ZPROFAPP prof |[in 8 Name of application profile pool extension table

ZSCRCUR shr non 4 Displays the number of logical screens currently in use.

ZSCREENC shr non 5 Cursor position within the logical screen data.

ZSCREENI shr non ? Logical screen data. Size depends upon your screen size.

Appendix E. System Variables 359

System Variables

Name

Pool

Type

Len

Description

ZSCRNAME

shr

m

Screen name set by dialog. The screen name is in effect only for
the select level in which it was defined. Option 7.3 can alter
ZSCRNAME, but this will have no impact.

See ZSCRNAME Examples” on page 361 for examples of its use.

ZSCRMAX

shr

non

Displays the number of logical screens allowed by the installation.

ZSCTPREF

shr

non

Site command table prefix

ZSCTSRCH

shr

non

Search order for site command table relative to system command
table. Set to either B (Before ISP) or A (After ISP).

ZSYSICON

shr

non

The 8-character variable that contains the command to be
executed when the system icon is double-clicked or close is
selected.

ZSYSID

shr

non

The 8-character SYSNAME obtained from the SYS1.PARMLIB
member IEASYSxx which is read at IPL time. NONAME is the
default value of SYSNAME. The operator can change this value at
IPL time. See the MVS/ESA System Programming Library:
Initialization and Tuning (GS28-1828-2 for more information.

ZSYSNODE

shr

non

12

The network node name of your installation’s JES. This name
identifies the local JES in a network of systems or system
complexes being used for network job entry (NJE) tasks. The node
name returned in ZSYSNODE derives from the NODE
initialization statement of JES.

If the system finds that the subsystem is not active, the
ZSYSNODE variable contains the string —INACTIVE— (note the
string delimiters).

If the system finds that the subsystem is neither JES2 4.3 or later,
nor JES3 5.1.1 or later, the ZSYSNODE variable contains the string
" —DOWNLEVEL—' (note the string delimiters).

The value in ZSYSNODE remains the same throughout the ISPF
session.

Note: If, for instance, the JES subsystem is taken down during an
ISPF session and the node name is changed, the value in
ZSYSNODE will still contain the value as determined at ISPF
initialization.

ZSYSPLEX

shr

non

The MVS sysplex name as found in the COUPLExx or LOADxx
member of SYST.PARMLIB. If no sysplex name is specified in
SYS1.PARMLIB, ZSYSPLEX contains blanks.

ZTEMPF

shr

non

44

Name of temporary data set for file tailoring output

ZTEMPN

shr

non

DDNAME of temporary data set for file tailoring output

ZTERMCID

shr

non

CCSID coded character set identifier of the terminal. Set by ISPF
based on the code page and character set of the terminal. If the
terminal code page and character set cannot be queried or if they
are not supported by ISPF, this variable will be blank.

ZTERMCP

shr

non

CECP support 4-digit code page.

Note: ZTERMCS is defined as character length 4. It cannot handle
5-character Character Sets. For example, the Character Set 65535
is displayed in ZTERMCS as "5535". This does not mean that ISPF
has defined Character Set 5535 (X'159F’). Two other Z variables,
ZTERMCS5 and ZTERMCPS, for Character Set and Code Page
respectively, were created to handle 5-character Character Sets
and Code Pages. For example, the Character Set 65535 is
displayed in ZTERMCP5 as 65535.

360 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

System Variables

Name Pool |[Type |Len Description

ZTERMCP5 shr non 5 CECP support 5-digit code page

ZTERMCS5 shr non 5 CECP support 5-character set

ZTERMCS shr non 4 CECP support 4-digit character set

ZTHS shr non 1 NLS thousands separator character

ZTS shr non 1 NLS time separator character

ZTSICMD shr non 22767 The entire initial invocation command string which invoked the

ISPF environment. If storage cannot be obtained at startup, only
the first 50 characters will be saved.

ZTSSCMD shr non 22767 SELECT portion of the initial invocation command.

ZUCTPREF shr non 4 User command table name

ZUSER shr non 8 User ID

ZVERB shr out 8 Command verb after a SETVERB command table action

ZWINTTL any in N/A |Title to be displayed in pop-up window frame

ZWSCDPG shr non 4 When running in GUI mode, the code page of the workstation.
When not running in GUI mode, value will be blank.

ZWSCON shr non 68 TCP/IP or APPC address when ISPF session is connected to a
workstation.

ZWSOPSYS shr non 16 Operating system of workstation to which the session is

connected. The first 10 characters are the operating system name,
followed by a blank, followed by two 2-digit numbers separated
by a blank. These numbers are returned to ISPF from the
operating system and change by version and release.

ZSCRNA

ME Examples

Example 1

On

the ISPF primary option panel the user issues the command SCRNAME POP.

The primary option panel’s screen name is now POP. The user then invokes
CLIST1.

CLI

ST1

PROC 0

ISPEXEC DISPLAY PANEL(PANELA)

SET &ZSCRNAME = EDIT1

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC EDIT DATASET ('PROJECT.GROUP.TYPE(BBBBBB)')
SET &ZSCRNAME = EDIT2

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC EDIT DATASET ('PROJECT.GROUP.TYPE(CCCCCC)')
SET &ZSCRNAME = BROWSE1

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC BROWSE DATASET ('PROJECT.GROUP.TYPE(DDDDDD) ')
SET &ZSCRNAME = LASTPAN

ISPEXEC VPUT (ZSCRNAME) SHARED

ISPEXEC DISPLAY PANEL(PANELA)

After the CLIST processes, the following results occur:

4.32767 is the maximum length.

Appendix E. System Variables 361

System Variables

ook wn -

PANELA displays with screen name POP.

The EDIT session displays with the screen name EDIT1.

The next EDIT session displays with the screen name EDIT2.
The BROWSE session displays with the screen name BROWSEL.
PANELA displays with the screen name LASTPAN.

End from PANELA and the primary option panel displays with screen name
POP.

Example 2

On the ISPF primary option panel the user issues the command SCRNAME POP.
The primary option panel’s screen name is now POP. The user then invokes
CLIST1 with the following results:

1.

© N Ok~ OD

©

11.

PANELA displays with screen name POP.

The EDIT session displays with the screen name EDIT1.

The user enters SCRNAME MYEDIT, so the screen name becomes MYEDIT.
After the EDIT session ends, the CLIST sets ZSCRNAME to EDIT2.

The EDIT session displays with the screen name EDIT2.

After this EDIT session ends, the CLIST sets ZSCRNAME to BROWSET.
The BROWSE session displays with the screen name BROWSEL.

The user enters SCRNAME MYBROWSE PERM, so the screen name becomes
MYBROWSE.

After the BROWSE session ends, the CLIST sets ZSCRNAME to LASTPAN.
PANELA displays with the screen name MYBROWSE. The CLIST command

ZSCRNAME=LASTPAN is ignored because the user issued the SCRNAME
MYBROWSE command with the PERM parameter.

The CLIST completes and the primary option panel displays with the screen
name MYBROWSE (again because the user issued the SCRNAME
MYBROWSE command with the PERM parameter).

Example 3

On the ISPF primary option panel the user issues the command SCRNAME POP.
The primary option panel’s screen name is now POP. The user then invokes
CLIST2.

CLIST2

PROC 0

SET &ZSCRNAME = STATE

ISPEXEC VPUT (ZSCRNAME) SHARED
ISPEXEC SELECT PANEL(MENUA) SCRNAME(NATION)
ISPEXEC DISPLAY PANEL(PANELA)

After the CLIST processes, the following results occur:

1.
2.
3.

MENUA displays with screen name NATION.
PANELA displays with the screen name STATE.

End from PANELA and the primary option panel displays with screen name
POP.

Terminal and Function Keys

5. 255 is the maximum length.

362 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

System Variables

Name Pool |Type |Len Description

ZCOLORS shr non 4 Number of colors supported by the terminal type (either 1 or 7)

ZDBCS shr non DBCS terminal capability (YES or NO)

ZFKA prof non 8 Current state of the function key area form (LONG, SHORT, OFF
(no display))

ZGE shr non 3 Terminal support for graphic escape order:

* YES — graphic escape is supported
* NO — graphic escape is not supported.
Note: If you are running in GUI mode, ZGE will be set to Off.

ZHILITE shr non Extended highlighting availability (YES or NO)

ZKEYS prof |out Number of Function keys

ZKLAPPL shr non If KEYLIST is ON and it is a panel with the)PANEL statement,
this contains the application id where the current keylist came
from.

ZKLNAME shr non 8 If KEYLIST is ON and it is a panel with the)PANEL statement,
this contains the name of the current keylist.

ZKLTYPE shr non 1 If KEYLIST is ON and it is a panel with the)PANEL statement,
this contains either P (for Private) or S (for Shared) for the current
keylist.

ZKLUSE prof i/o 1 If KEYLIST is ON this contains Y, if it is OFF, it contains an N.

ZPFCTL prof |i/o 5 User authorization to use PESHOW command
* USER—User controls function key display with PESHOW

command
* ON—Display function key defitions on all panels
* OFF—Do not display function key definitions

ZPFEMT prof |i/o 4 Number of Function key definitions displayed per line
» SIX—Always display six keys per line
* MAX—Display as many keys as will fit on each line

ZPFSET prof |i/o 4 Function key definition set displayed
e PRI—Primary set (1-12)

e ALT—Alternate set (13-24)
* ALL—AII keys (1-24)

ZPFSHOW prof |out 4 PFSHOW command status

ZPFxx prof |i/o 2555 | Setting for Function keys:
ZPF13-ZPF24 contain settings for the primary keys (for 12-key
terminals: physical keys 1-12; for 24-key terminals: physical keys
13-24)
ZPF01-ZPF12 contain settings for the alternate keys (for 24-key
terminals only: physical keys 1-12)

ZPFLxx prof |i/o 8 Setting for Function key labels:

ZPFL13-ZPFL24 contain labels for the primary keys

ZPFL01-ZPFL12 contain labels for the alternate keys

Appendix E. System Variables 363

System Variables

Name Pool |Type |Len Description

ZPRIKEYS prof |i/o 4 Indicates the set of Function keys that will be the primary keys
* LOW—1 to 12 are primary keys
e UPP—13 to 24 are primary keys

ZSCREEN shr non 1 Logical screen number up to 32 screens (1-9, A-W)

ZSCREEND shr non 4 Screen depth available for dialog use. In batch mode, this variable
is set by the value specified for BATSCRD on the ISPSTART call.

ZSCREENW shr non 4 Screen width available for dialog use. In batch mode this variable
is set by the value specified for BATSCRW on the ISPSTART call.
ZSCREEND and ZSCREENW are generally the dimensions of the
physical display screen. There are two exceptions:
1. On a 3290, if a dialog is executing on a display with a width of
160 characters and the user does a vertical split, then
ZSCREENW is 80.
2. On a 3278 model 5, if a user has specified SCREEN FORMAT
IS STD, then ZSCREENW is 80 and ZSCREEND is 24, rather than
the maximum physical size of 132 by 27.

ZSCRMAXD shr non 4 Maximum screen depth available for dialog use. In batch mode,
this variable is set by the value specified for BATSCRD on the
ISPSTART call.

ZSCRMAXW shr non 4 Maximum screen width available for dialog use. In batch mode,
this variable is set by the value specified for BATSCRW on the
ISPSTART call.
ZSCRMAXD and ZSCRMAXW are identical to ZSCREEND and
ZSCREENW, except for terminals on which an alternate size is
available. In that case, ZSCRMAXD and ZSCRMAXW contain the
screen configuration size that produces the largest screen.
For the 3290, these variables contain sizes of the hardware
partition on which ISPF is operating.

ZSPLIT shr non 3 Split-screen mode in effect (YES or NO)

ZTERM prof |out 8 Terminal type as defined by option 0

Scrolling

Name Pool |Type |Len Description

ZSCBR prof |i/o 4 Scroll amount for the BROWSE service

ZSCED prof |i/o 4 Scroll amount for the EDIT service

ZSCML prof |i/o 4 Scroll amount for member lists

ZSCROLLA shr out 4 Value from scroll amount field (PAGE, MAX, number)

ZSCROLLD any in 4 Value to be used as default scroll value for scrollable dynamic
areas and table display

ZSCROLLN shr out 4 Scroll number as computed from the value in the scroll amount
field

364 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

System Variables

PRINTG Command

Name Pool |Type |Len |Description

ZASPECT func |in 4 Aspect ratio of printed output from PRINTG

ZDEVNAM func |in Device name for PRINTG

ZFAMPRT func |non 4 Family printer type for PRINTG

Table Display Service

Name Pool |Type |Len |Description

ZTDADD func |out 3 More rows needed to satisfy scroll request (YES I NO)

ZTDAMT func |out 4 Number of rows that the dialog should add to satisfy scroll

ZTDLROWS func |in 6 Number of rows in the logical table (dynamic table expansion)

ZTDLTOP func |in 6 Maps current top row in physical table to its position in logical
table.

ZTDMARK any in note ® | User-defined text for table display Bottom-of-Data marker

ZTDMSG any in 8 User-defined message ID for table display top-row-displayed
indicator

ZTDRET func |[in 8 Defines whether dialog wants to use scroll return feature.

ZTDROWS func |out 6 Number of table rows upon return from table display

ZTDSCRP func |in/out| 6 CRP of top row to be displayed after the scroll

ZTDSELS func |out 4 Number of selected table rows upon return from each table
display

ZTDSIZE func |out 4 Size (number of model sets) of the table display scrollable section

ZTDSRID func |out Rowid of the row pointed to by ZTDSCRP

ZTDTOP func |out 6 Row number (CRP) of top row displayed during most recent
table display

LIST Service

Name Pool |Type |Len |Description

ZLSTLPP shr non 4 Number of lines per page in list data set

ZLSTNUML shr non 4 Number of lines written to current list data set page

ZLSTTRUN shr non 4 List data set record length truncation value

LOG and LIST Data Sets

Name Pool |Type |Len Description

ZLOGNAME shr non 44 | Contains the fully qualified data set name of the log data set.

ZLSTNAME shr non 44 | Contains the fully qualified data set name of the list data set.

6. Any length not more than the screen width.

Appendix E. System Variables 365

System Variables

Dialog Error

Name Pool |Type |Len |Description

ZERRALRM func |out 3 Message alarm indicator (YES or NO)
ZERRHM func |out 8 |Name of help panel associated with error message
ZERRLM func |out 512 | Long error message text

ZERRMSG func |out 8 | Error message-id

ZERRSM func |out 24 | Short error message text

ZERRTYPE func |out 8 | Error message type

ZERRWIND func |out 6 | Error message window type
Tutorial Panels

Name Description

ZCONT Name of next continuation panel

ZHINDEX Name of first index panel

ZHTOP Name of top panel

ZIND YES specifies an index page

ZUP Name of parent panel

Selection Panels

Name Description

ZCMD Command input field

ZPARENT Parent menu name (when in explicit chain mode)
ZPRIM YES specifies panel is a primary option menu
ZSEL Command input field truncated at first period

DTL Panels or Panels Containing a)PANEL Section

Name

Pool |Type |Len Description

ZCURFLD

func |out 8 Name of field (or list column) containing the cursor when the

user exits the panel.

ZCURINX

func |out 8 For table display panels, the current row number of the table row
containing the cursor. The value ZCURINX is in character format.

If the cursor is not within a table row, this value will be 0.

ZCURPOS

func |out 4 Position of the cursor within the field specified by ZCURFLD
when the user exits the panel. The value in ZCURPOS is in
character format. If the cursor is not within a field, ZCURPOS

will contain a 1.

Note: These variables will contain the values that would result if they were set to
.CURSOR, .CSRPOS, and .CSRROW, as the first statements in the panel’s
)PROC section.

366 z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non_IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785, USA.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries in writing to

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1980, 2001 367

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact the IBM Corporation,
Department TL3B, 3039 Cornwallis Road, Research Triangle Park, North Carolina,
27709-2195, USA. Such information may be available, subject to appropriate terms
and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non_IBM products should be addressed to the
suppliers of those products.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming Interface Information

This book primarily documents information that is NOT intended to be used as
Programming Interfaces of ISPF.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

APL2 IBM

BookManager Language Environment
C++ MVS

COBOL/2 MVS/ESA

Common User Access MVS/XA

CUA 0s/2

DFSMSdfp 0S/390

DFSMSdss 0S/390 Security Server
DFSMShsm RACF

DFSMSrmm Resource Access Control Facility
DFSMS/MVS SOMobjects

DFSORT System View

ESCON VisualLift

FFST VTAM

GDDM

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

368 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Other company, product, and service names may be trademarks or service marks
of others.

Notices 369

370 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Index

Special Characters

" (quotation marks), enclosing
literals 109
= (equal sign) operator on the IF
statement 239
% sign
beginning a command procedure
name with 12
default attribute character 172
_ (underscore) character, default
attribute 172
+ sign
continuation character for literals 109
default attribute character 172
)ABC section, defining pull-down
choice 160
JABC section of panel definition 157
JABCINIT section of panel
definition 163
JABCPROC section of panel
definition 164
.ALARM control variable 267
JAREA section of panel definition 164
.ATTR control variable
considerations 270
description 268
override conditions 205
using with table display panels 269
JATTR section of panel definition 171
.ATTRCHAR control variable
description of 269
dynamic area override 145
override conditions 205
.AUTOSEL control variable 271
)BLANK file-tailoring control
statement 301, 307
)BODY section of panel definition 207
)BODY statement, WINDOW
keyword 107
.CCSID section of message
definition 295
)CCSID section of panel definition 213
)CM file-tailoring control statement 308
.CSRPOS control variable 271
.CSRROW control variable 272
.CURSOR control variable
description 273
example 267
when not initialized or set to
blank 273
+= operator on the IF statement 239
+> operator on the IF statement 239
+< operator on the IF statement 239
)DEFAULT skeleton control
statement 304
)DOT file-tailoring control statement 307
)END section of panel definition 214
JEND statement, required on panel
definition 108
JENDDOT file-tailoring control
statement 307

© Copyright IBM Corp. 1980, 2001

)ENDSEL file-tailoring control
statement 307
> (greater than) operator on the IF
statement 239
>= operator on the IF statement 239
<= operator on the IF statement 239
< operator on the IF statement 239
.HELP control variable
description 274, 283, 291
example 267
JHELP section of panel definition 214
.HHELP control variable
description 274
)IM file-tailoring control statement 303
)INIT section of panel definition 216
.KANA control variable in messages 291
)LIST section of panel definition 216
)JMODEL section of panel definition 217
.MSG control variable
description 274
in batch mode 37
panel user exit messages 247
.NRET control variable 275
)PANEL statement KEYLIST
parameter 217
.PFKEY control variable 276
)PNTS statement 221
)PROC section of panel definition 225
)REINIT section of panel definition 225
.RESP control variable
description 276
in batch mode 36
)SEL file-tailoring control statement 307
)SET file-tailoring control statement 308
)IB file-tailoring control statement 305
)TBA file-tailoring control statement 305
.TRAIL control variable
description 277
example 114, 230
.TYPE keyword, message definition 292
.WINDOW keyword, message
definition 292
.ZVARS control variable
description 277, 278
example 278
.ZVARS control variable, associating a
PDC with a variable name in
JABCINIT 162

Numerics

3278 Mod 5

batch mode 36

graphics interface mode 149
3290

batch mode 36

graphics interface mode 148
908 error return code 22
920 error return code 22
985 error return code 22
987 error return code 22

988 error return code 22
989 error return code 22
990 error return code 22
997 error return code 22
998 error return code 22
999 error return code 23

A

A, used to specify alternate tabbing 305
ABCINIT section of panel definition 163
ABCPROC section of panel

definition 164

abend

diagnostic panels 338
ABEND

codes 338

description 24
accessing table data 71, 369
action bar choice initialization panel
definition section
definition 163
action bar choice processing section of
panel definition
definition 164
action bar choice section of panel
definition
definition 157
action bars and pull-down choices 92
ADDPOP parameter on ISPSTART
command 10
ADDPOP service 91, 92
ADDSOSI built-in function on assignment
statement 233
alarm indicator message 366
ALARM keyword, message
definition 292
ALPHA parameter on VER
statement 253
ALPHAB parameter on VER
Statement 254
alternate tabbing 305
APL keyboard character translations 325
APL2
multiple calls of 30, 369
number of times invoked, system
variable containing 358
using 28, 369
workspace used as the function
pool 31, 369
application-id parameter on
ISPSTART 10, 15
application identifier, system
variable 358
application keylist 91
application profile pool 61, 66, 369
application profile pool extension name,
system variable 359
AREA(DYNAMIC) parameter in)JATTR
section 174

371

AREA(SCRL) parameter in JATTR
section 178
area section of panel definition
definition 164
array of variable lengths on panel user
exit parameter 246
array of variable names on panel user
exit parameter 246
ASIS parameter
in)BODY header statement 209
on VGET panel statement 264
on VPUT panel statement 265
on VPUT statement 264
with JUST keyword 187
aspect ratio system variable for
PRINTG 365
assignment statement in panel
definition 228
attention exits (CLIST) 27
ATTN keyword in)ATTR section 179
ATTN statement 27
attribute characters
default 172
restriction 173
attribute section of panel definition
basic attribute types 199
CUA attribute types 201
default characters 172
definition 171
other attribute types 203
requirements for table display
panel 134
authorized programs, invoking 25
authorized TSO commands, invoking 25
AUTOSEL (.AUTOSEL) control
variable 271
AUTOSEL (auto-selection) 130
autoskip
description 197
graphic area 149

B

BACK tutorial command 283
background display execution 35
background panel processing 35
BARRIER keyword 113
batch display facility, using 35
batch environment
avoiding loops in batch 37
display error processing 37
log and list data sets 37
processing commands 37
terminal characteristics 36
TSO 33
batch execution
description 33
TSO error processing 35
TSO sample job 34
BATSCRD keyword on ISPSTART
command 10, 36
BATSCRW keyword on ISPSTART
command 10, 36
BDBCS keyword on ISPSTART
command 10, 36
BDISPMAX keyword on ISPSTART
command 10, 38

372

BIT parameter on VER statement 254
BKGRND keyword on ISPSTART
command 10
BKGRND parameter on ISPSTART 15
BLANK file-tailoring control
statement 307
blinking, specifying for HILITE
keyword 187
body section of panel definition
controlling width of panel 207
defining 207
definition 207
formatting message field 209
requirements 135
requirements for table display
panel 135
sample 212
Boolean operators on the IF
statement 241
bottom-of-data marker
definition 131
system variable containing for table
display, user defined 365
BREDIMAX keyword on ISPSTART
command 10, 37
BRIF service 86, 369
BROWSE service 86, 369
browse service scroll amount, system
variable 364
browse services panel definition, scroll
field location 102

C

call of ISPF 9, 10
CAPS keyword in panel)JATTR
section 134, 173, 179
CCSID parameter of the GETMSG
service 312
CCSID section of message definition
messages tagged 295
CCSID section of panel definition
definition 213
extended code page support 312
chain mode, explicit 116
char parameter
with PAD keyword 192
with PADC keyword 193
with PAS keyword 193
character compare on IF statement 240
character level attribute 145
character translations for APL, TEXT and
Katakana keyboards 325
CHINESES keyword on the ISPSTART
command 10, 17
CHINESET keyword on the ISPSTART
command 10, 17
CKBOX keyword in panel) ATTR
section 179
CLEAR keyword on)MODEL statement
in table display panel 136
CLIST
attention exits 27
example of invoking procedure by
using ISPSTART command 17
variables used in procedure 7
CM file-tailoring control statement 308

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

CMD
keyword
in)PROC section 113
in panel)BODY section 209
parameter on ISPSTART
command 10
code page parameter for ISPSTART 15
coded character set identifier, system
variable 360
CODEPAGE 15
COLOR keyword in panel)ATTR
section 180
COMBO keyword in panel JATTR
section 181
command field
naming of 102
naming with the CMD keyword 209
panel) BODY section 207
position in panel definition 102
command field of a table display
panel 131
command line placement, system
variable 359
COMMAND parameter, in panel)PROC
section 113
command procedure 63, 369
command tables
and application IDs 16
definition of 2
ISPCMDS system command table 2
command verb after a SETVERB
command table action, system
variable 361
commands
ISPF, in batch environment 36
processing in batch environment 37
comment statements 109
comments, optional display 187
Common User Access (CUA)
description of ISPF support 91
dot leaders 104
keyword values 203
compare character vs. numeric 240
COMPOUND variables 7
concatenation of variables 110
conditional padding of panel field 173
conditional substitution string 302
CONT system variable on tutorial
panels 284
continuation character for literals 109
continuation panel 285
CONTROL NONDISPL in batch
mode 36
CONTROL service 88, 369
control statements in skeleton
definition 301
control variables
example 267
in panels 266
initialization 266
list of 266
when reset 266
conversion utility 91
CRASH 24
creating action bars 162
creating panel display dialog elements 5

CRP of top row displayed in most recent
table display, system variable 365
CSRGRP(x) keyword in panel JATTR
section 182
CSRPOS (.CSRPOS) control variable 271
CUA guidelines, dot leaders 104
CUADYN 201
CUADYN keyword in panel) ATTR
section 182
cursor placement, default 273
cursor position
system variable 359

D

DANISH keyword on ISPSTART
command 10, 17
data records in skeleton definition 301
DATAMOD keyword in)ATTR section of
dynamic panels 175
date and time information (system
variables) 357
DBCS
batch mode 36
command and message fields 208
data validation 111
parameter on VER statement 254
replacement characters 196
specifying format 186
specifying search argument format for
table services 82, 369
system variable containing terminal
capability 363
variables
in messages and file
skeletons 149
on panel definitions 299, 309
verifying string length (VER
LEN) 258
DDL filename
system variable 358
DDLIST keyword in panel JATTR
section 182
ddname of file tailoring temporary file,
system variable 360, 361
debug tools
ISRABEND 331, 369
ISRCSECT 331, 369
ISRFIND 331, 369
ISRPOINT 331, 369
ISRTCB 331, 369
ISRTEST 331, 369
DEFAULT
attribute or body section
statement 172
skeleton control statement 304
default attribute characters 172
default keylist for DTL Help Panels 282
defining messages 289
delimiter
system variable 358
delimiters in verified variable 255
DELSOSI built-in function on assignment
statement 233
DEPTH keyword in panel)ATTR
section 185
determining table size 73, 369

device name system variable for
PRINTG 365
diagnosing ISPF abends 338
dialog
beginning with menu or function 6,
10
call by using application master
menu 18
control 5
definition 1
development of 4
elements 1
example 74, 369
function, languages used for
coding 2
initiation 19
organization 5
return codes 22
running of 10
scope 21
termination 21
variables 7
writing
using display services 41, 369
using file-tailoring services 83,
369
using miscellaneous services 87,
369
using PDF services 85, 369
using table services 70, 369
using variable services 60, 369
dialog elements
description 4,5
test of 4
dialog function 1
creation of 4
description of 2
dialog, languages used for coding 2
example 74, 369
function pools 62, 369
naming 12
scope 21
Dialog Tag Language (DTL) 91
dialog variables, format 68, 369
dialog variables, list of 351, 369
directive lines, optional display 187
display error processing in the batch
environment 37
display message variations 294
display services 369
DBCS-related variables
in batch mode 35
displaying a pop-up window 92
DOT file-tailoring control statement 307
DSNAME parameter on VER
statement 254
DSNAMEEF parameter on VER
statement 254
DSNAMEEFM parameter on VER
statement 254
DSNAMEPQ parameter on VER
statement 254
DSNAMEQ parameter on VER
statement 255
DUMP keyword on ENVIRON
command 336

149, 299, 309

dynamic area
character level attribute support 145
formatting panels 142

dynamic table expansion 45, 131, 369

E

EBCDIC
parameter on VER statement 255
specifying format 185
EDIF service 86, 369
EDIREC service 86, 369
EDIT service 86, 369
edit service panel definition, specifying
location of scroll field 102
edit service scroll amount, system
variable 364
EDREC service 86, 369
elements of a dialog 1
ELSE statement in panel sections 238
ENBLDUMP parameter on ENVIRON
command 333
end of displayed data specification 131
END section of panel definition
definition 214
ENDDOT file-tailoring control
statement 307
ENDSEL file-tailoring control
statement 307
ENGLISH keyword on ISPSTART
command 10, 17
entry point address on diagnostic
panel 338
ENUM parameter on VER
statement 255
ENVIRON system command 332
environment 1
environment description, system
variable 359
EQ operator on the IF statement 239
error conditions for panel user exit 247
ERROR keyword on ENVIRON
command 335
error message-id, system variable 366
error panel 37, 369
error processing
SYSPRT file 21
TSO batch execution 35
when put into effect 21
error recovery panel at abend 338
error return codes from dialog to
invoking application 22
ESTAE restrictions 33
executable section of a dialog 216, 225
executing APL2 functions 30, 369
EXHELP 95, 279
exit data on panel user exit
parameter 246
EXIT keyword in)PROC section 113,
115, 117
EXIT statement in panel section 236
EXIT statements 236
exits, CLIST attention 27
EXPAND keyword in panel)BODY
section 207
expected-length operand (on VER
LEN) 259

373

Index

explicit chain mode 116
EXTEND parameter
in)ATTR section 174, 178
in graphic areas 176
Extended Code Page Support
base code pages 318
CCSIDs supported 316
description 311
ISPF-provided translate tables 321
messages tagged 312
panels tagged 312
translate load modules 312
Z variables 311
Extended Code Page Translate Tables
Provided by ISPF 321
extended help 95, 279
extended highlighting availability, system
variable 363

F

field-level help 95, 214, 279, 369
field-type specification in panel)JATTR
section 197
file-tailoring services
example 84, 369
skeleton files 83, 369
writing dialogs 83, 369
file-tailoring skeleton
control statement considerations 303
data record considerations 83, 301,
369
DBCS considerations 309
defining 301
definition 3
sample 309
file tailoring temporary file name, system
variable 360
FILEID parameter on VER
statement 257
fixed portion of a TBDISPL display 131
FORMAT keyword
in panel)ATTR section 173, 185
in panel) BODY section 207
formatting guidelines for panels 217
FRAME parameter on ISPSTART 15
FRENCH keyword on ISPSTART
command 10
FRENCH keyword on the ISPSTART
command 17
function, definition 1
function commands, definition 135, 369
Function key set displayed, system
variable 363
Function key settings, system
variables 363
Function keys, system variable containing
number of 363
function pool 61, 62, 63, 369

G

GDDM
in batch environment 36
interface to 148

GDDM service 88, 369

374

GE keyword
in panel)ATTR section 186

GE operator on the IF statement 239
GERMAN keyword on ISPSTART

command 10, 17
GETMSG service 89, 369
GIF 218
GOTO statement in panel section 236,

238
graphic area, panel definition 176
graphical user interface

batch mode 38

GRPBOX 203
GT operator on the IF statement 239
GUI in batch mode 38
GUI parameter on ISPSTART 10, 14
GUISCRD 14
GUISCRD parameter on ISPSTART 10
GUISCRW 14
GUISCRW parameter on ISPSTART 10

H

help
extended 95, 279
field-level 95, 279
help for help 279
keys 95, 279
message 279, 280
panel 279, 280
reference phrase 96, 280
TUTOR command 280
tutorial 280
help for help command 279
help panel 111
name associated with error
message 366
system variable containing name
associated with error message 366
with scrollable areas 167
help section of panel definition
definition 214
HELP system command
entry to tutorial 283
on ABEND panels 338
HEX parameter on VER statement 257
HIGH parameter with INTENS
keyword 187
HILITE keyword in panel)ATTR
section 187

IDATE parameter on VER statement 257

IF statement
basic IF 239
with Boolean operators 241
with VER constructs 240
IM file-tailoring control statement 303
IMAGE keyword 218
IN parameter used with CAPS
keyword 179
INCLUDE parameter on VER
Statement 257
index page, specifying for tutorials 285
INDEX tutorial command 283

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

initialization of control variables 266
initialization section of panel definition
definition 216
requirements for table display 137
initiating dialog execution 19
INPUT parameter used with TYPE
keyword 198
INTENS keyword in panel JATTR
section 173
invoking
authorized commands 26
authorized programs 25
authorized TSO commands 25
TSO commands 26
invoking a dialog
from a selection panel 18
from the ISPF master application
menu 18
the ISPSTART command 17
ISP@MSTR, ISPF Master Application
Menu 116
ISP@PRIM on the ISPF Primary Option
Menu 122
ISPCMDS system command table 2
ISPF
command 26, 369
Common User Access support 91
default keylist 282
EDIF service 32, 369
help panels 279
interface with APL2 32, 369
overview 4
tutorial panels 279
variables 67, 369
ISPF conversion utility 91
ISPF Services in Batch Mode 33
ISPPREP preprocessed panel routine
batch environment 37
error conditions 154
examples 154
restrictions 152
return codes 154
using 150
ISPREXPX 247
ISPSTART command
description 9, 10
example 10
syntax 10
TSO 26, 369
ISPTTDEE, using to specify translate
tables 329
ISPTUTOR 283
ISRABEND debug tool 331, 369
ISRCSECT debug tool 331, 369
ISRFIND debug tool 331, 369
ISRPOINT debug tool 331, 369
ISRROUTE command 162
ISRTCB debug tool 331, 369
ISRTEST debug tool
description 331, 369
ITALIAN keyword on ISPSTART
command 10
ITALIAN keyword on the ISPSTART
command 17
ITIME parameter on VER statement 258

J

JAPANESE keyword on ISPSTART
command 10, 17
JDATE parameter on VER statement 258
JSTD parameter on VER statement 258
JUST keyword in panel)ATTR
section 134, 173, 187
justifying a panel field 187

K

KANA keyword
extended code page support 314
on panel)BODY section 207, 325
Katakana
keyboard character translations 325
terminal displaying messages 291
key assignment 91

keylist
application 91
system 91

keylist defaults for DTL Help Panels 282

KEYLIST parameter on)PANEL
statement 217

keylist utility 106

keys 282

keys help 95, 279

KEYS system command, batch
environment 37

KEYSHELP 95, 279

KOREAN keyword on ISPSTART
command 10

KOREAN keyword on the ISPSTART
command 17

L

LANG(APL) parameter
in panel)PROC section 113
on ISPSTART command 10
languages used for coding functions 2
last visible line function (LVLINE) 233
LE operator on the IF statement 239
leading blanks in verified variable 255
LEFT parameter used with JUST
keyword 187
LEN keyword on VER statement 258
LIBDEF service 89, 369
library access services 86, 369
light pen, using to select a field 179
line display mode, automatic and
nonautomatic entry into line mode 11
list data set in a batch environment 37
LIST parameter on VER statement 259
list section of panel definition
definition 216
LIST service 89, 369
LISTBOX keyword in panel)ATTR
section 188
LISTV parameter on VER Statement 259
LISTVX parameter on VER
Statement 260
LISTX parameter on VER Statement 260
LMSG parameter on panel)JBODY
section 209
loading a panel user exit routine 244

loading a REXX panel exit 245
log data set
batch messages 37
in batch environment 37
LOG service 89, 369
logical screens
system variable 359
logical screens, maximum
system variable 360
LOGO parameter on ISPSTART
command 16
LOGOFF command 26, 369
LOGON command 26, 369
long error message text, system
variable 366
loops, avoiding in batch 37
LOW parameter used with INTENS
keyword 187
LT operator on the IF statement 239
LVLINE built-in function on assignment
statement 233

M

master application menu
example of definition 116
example of display 18
member lists scroll amount, system
variable 364
menu
definition of primary option 115
entry to tutorial 283
example of a master application
menu 116
example of primary option 129
special definition requirements 111,
112
use of ZPARENT to set next
display 116
message alarm indicator 366
message definition
DBCS considerations
description of 3
example of short and long 290
Katakana considerations 291
message ID 290
processing 289
syntax 290, 299
message field location 101
message fields in panel)BODY
section 207
message help 279, 280, 291
message-id, system variable containing
error 366
message ID on panel user exit
parameter 246
message library
description of 289
example 290
message text
long error 366
short error 366
system variable containing 366
messages
display variations 294
in batch environment 37

299, 309

miscellaneous services, used in writing
dialogs 87, 369
MIX parameter on VER statement 260
mixed characters, specifying format 186
MODE keyword 113, 114
model lines
definition of 131
specified in a variable 137
model section of panel definition
definition 217
requirements for table display
panel 136
model sets
description of 132
example 43
modeless message pop-ups 296
module name on diagnostic panel 338
moveable pop-ups
manual movement 94
WINDOW command 94
MSG=value parameter on assignment
statement 230
msgid keyword 290

N

NAME parameter on VER
statement 260
NAMEF parameter on VER
statement 260
naming defined and implicit
variables 64, 369
naming restrictions for dialog
functions 12
NB parameter on VER statement 253
NE operator on the IF statement 239
negative number indicators 255
NEST keyword 113
nested CLISTS, attention exits 28
NEWAPPL, (application-id)
parameter 10, 113
NEWPOOL parameter in)PROC
section 113
NG operator on the IF statement 239
NL operator on the IF statement 239
NLS
common characters 311, 369
GETMSG service 312, 369
messages tagged with CCSID 295,
369
TRANS service 312, 369
NOCHECK parameter
example 114
in)PROC section 113
NOJUMP keyword in panel JATTR
section 191
NOKANA keyword in message
definition 291
NOLOGO parameter on ISPSTART
command 16
NON parameter used with INTENS
keyword 187
NONBLANK parameter on VER
statement 253
null system variable 358
NULLS parameter used with PAD
keyword 192
375

Index

NUM parameter on VER statement 261

number of colors supported by the
terminal type, system variable 363

number of Function keys, system
variable 363

number of variables on panel user exit
parameter 246

numeric (extended) verification 255

numeric compare on IF statement 240

NUMERIC keyword in panel JATTR
section 191

Numeric Lock feature (with NUMERIC
attribute keyword) 191

o)

OFF parameter
with ATTN keyword 179
with CAPS keyword 179
with NOJUMP keyword 191
with NUMERIC keyword 191
with SKIP keyword 197
ON parameter
with ATTN keyword 179
with CAPS keyword 179
with NOJUMP keyword 191
with NUMERIC keyword 191
with SKIP keyword 197
ONEBYTE built-in function on
assignment statement 234
online tutorial 283
OPT(option) parameter on ISPSTART
command 10
OPT system variable 112
OUT parameter used with CAPS
keyword 179
OUTLINE keyword
in panel)ATTR section 172, 173, 192
in panel) BODY section 207, 211
OUTPUT parameter used with TYPE
keyword 198

P

PAD keyword in panel)ATTR
section 173, 192
PADC keyword in panel)ATTR
section 193
panel definition 100
)PNTS statement 221
attribute section
default characters 172
blanks 108
body section
sample 212
command field
description 101
specifying 207
comment statement 108
creation of 5
description 100, 101
design suggestions 104
dynamic areas 200
graphic areas 176
GUI considerations 136, 149
help and tutorial panels 283

panel definition (continued)
initialization section
statement formats 228
line 1 content 102
line 2 content 102
line 3 content 102
location 101
menus 111
model section 136
panel title, location 101
reinitialization section
statement formats 228
restrictions 108
sections 100
short message for TBDISPL
operations 102
size 107
special requirements 111
specifying a message field 209
split-screen consideration 104
syntax rules 108
table display 129
tutorial and help panels 283
using)PANEL 217
panel help 279, 280
panel name on panel user exit
parameter 246
PANEL parameter
in)PROC section 113
on ISPSTART command 10
panel redisplay 226
panel section of panel definition
formatting panel 217
panel section on panel user exit
parameter 246
panel user exit routine
description 242
how to invoke 245
how to load 244
parameters passed 246
return codes 247
panels
preprocessed 150
vertically scrollable 107
PANEXIT statement 242
PARM
keyword
in)PROC section 113
on preprocessed panels 151
parameter on ISPSTART
command 10
parts of a dialog 1
PAS keyword in panel) ATTR
section 193
passing control from program-coded to
command-coded function 6
PDF command 26, 369
PDF service
library access 86, 369
where to find examples and
listings 87, 369
writing dialogs 85, 369
pending END request 132
pending scroll request 132
pending selected rows 132
percent (%) sign, beginning a command
procedure name with 11

376 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

PFK built-in function on assignment
statement 232
PFkey, system variable 359
PGM keyword in)PROC section 113
PGM parameter on ISPSTART
command 10
PICT parameter on VER statement 261
PICTCN parameter on VER
statement 261
pools, variable
application profile 61, 369
function 61, 369
shared 61, 369
pop-up window
ADDPOP service 92
moveable 93
processing considerations 149
size 208
PORTUGUESE keyword on ISPSTART
command 10, 17
POSITION, TBDISPL parameter 133, 369
PQUERY
in batch environment 36
used with dynamic area 145
PQUERY service 89, 369
prefix system variable 359
preprocessed panels
creating (ISPPREP) 150
definition 150
ISPPREP call 152
PARM keyword 151
SELECT service 151
Primary Option Menu 115
printer family type for PRINTG 365
processing section of panel definition
definition 225
requirements for table display 138
PROFILE parameter
on VGET panel statement 264
on VPUT panel statement 264, 265
program-name parameter
in panel)PROC section 113
on ISPSTART command 10
program status word on diagnostic
panel 338
protecting table resources 72, 369
PSW on diagnostic panel 338
pull-down choice, defining within the
)ABC section 160
pushbuttons 222
pushbuttons, large 222

Q

QUERY parameter on the ENVIRON
command 338

quotation mark, enclosing literals 109

quote mark, enclosing literals 109

R

RADIO keyword in panel)ATTR
section 194

RANGE parameter on VER
statement 262

read-only profile pool extension
variables 66, 369
reason code on diagnostic panel 338
recovery termination manager at
abend 340
redisplay of a panel 226
reference phrase help 96, 280
REFRESH statement in panel
sections 249
register content at abend on diagnostic
panel 338
reinitialization section of panel definition
definition 225
requirements for table display 138
relational operators (on VER LEN) 258
removing a pop-up window 92
removing variables from the shared or
profile pool 66, 369
REMPOP service 91, 92
REP keyword in panel)ATTR
section 173, 196
replacement characters 196
reset of control variables 266
return codes
for panel user exit routine 247
from terminating dialog 22
return to function when scrolling 45,
369
REVERSE parameter used with HILITE
keyword 187
reverse video, specifying 187
REXX panel exit
how to load 245
RIGHT parameter used with JUST
keyword 187
ROWID, TBDISPL parameter 369
ROWS keyword on)MODEL statement in
table display panel 136
rows of a table, adding dynamically 45,
49, 369
running a dialog 10

S

scope of a function 21
screen
logical number of 364
system variable containing 364
screen depth and width available for use
by a dialog
system variable containing 364
screen depth and width available for use
by a dialog, system variable 364
screen depth on ISPSTART command for
batch 10
screen depth parameter for
ISPSTART 14
screen name
system variable 360
screen width for batch mode on
ISPSTART command 10
screen width parameter for
ISPSTART 14
scroll amount
field of a TBDISPL display, definition
of 132

scroll amount (continued)
for browse service, system variable
containing 364
for edit service, system variable
containing 364
for member lists, system variable
containing 364
location 101
system variable containing 364
system variable containing field
value 364
system variable containing number of
lines or columns to 364
value default for dynamic areas and
table display 364
SCROLL parameter in)JATTR
section 174
scrollable areas
definition, section of panel 164
in the)BODY section 178
vertically scrollable panels 107
with help panel 167
scrollable portion of a TBDISPL
display 132
scrolling, expanding displayed table 46,
369
SDWA reason code at abend 338
searching variable pools 61, 369
SEL
file-tailoring control statement 307
system variable 112, 284
select field of a TBDISPL display 133
SELECT service 61
call 21
controlling access to dialog variable
pools 369
description 19
panel (VGET) 264
panel processing 113
passing control in a dialog 61, 369
preprocessed panels 151
Selected Choice (SC) attribute 205
selected row, defined 133
selection panel, system variables 366
separator
system variable 358
system variable containing 360, 361
services
to dialogs 1
to interactive applications 1
services description, SELECT 19
SET file-tailoring control statement 308
SGERMAN keyword on the ISPSTART
command 10, 17
shadow variable 145
SHARED parameter
on VGET panel statement 264
on VPUT panel statement 264, 265
shared pool 61, 369
sharing variables among dialogs 65, 369
shift-in character (DBCS) 186, 233
shift-out character (DBCS) 186, 233
short error message text, system
variable 366
short message syntax 291
site command table prefix, system
variable 360

skeleton
description of 3
skeleton definition
assigning a value to a variable 308
comment statement 308
control statements 303
defining 301
description of 301
example 309
format of 301
imbedding 303
imbedding blank lines 307
specifying table processing 307
tab stop 305
types of records in 301
SKIP
keyword in panel)ATTR section 173,
197
tutorial command 283
SMSG parameter on panel) BODY
section 209
SPANISH keyword on ISPSTART
command 10
SPANISH keyword on the ISPSTART
command 17
specifying DBCS search argument
format 82, 369
SPF command 26, 369
SPLIT command, disabled in batch
environment 37
split-screen in effect, system
variable 364
SPLITV system command, disabled in
batch environment 37
stacked commands, graphics interface
mode restriction 148
standard tabbing 305
START service 97, 369
starting a dialog
methods 10
using the ISPSTART command 17
using the SELECT service 19
starting ISPF 9, 10
STDDATE parameter on VER
statement 262
STDTIME parameter on VER
statement 262
STEM variables 7
stepname of TSO logon, system
variable 359
storing variables from a panel in shared
and profile pools (VPUT) 265
string of variable values on panel user
exit parameter 246
substitution string, conditional 302
subtasking support 33
syntax rules
message definition 290, 299
panel definition 108
skeleton definitions 301
System keylist 91
system variable containing number of
lines or columns to scroll 364
system variables 369
list of 357
used for communication between
dialogs and ISPF 366

377

Index

378

system variables (continued)

Z 358
ZACCTNUM 358
ZAPLCNT 358
ZAPPLID 358
ZAPPTTL 358
ZASPECT 365
ZBDMAX 358
ZBDMXCNT 358
ZCMD 366
ZCOLORS 363
ZCONT 366
ZCS 358
ZCSDLL 358
ZCURFLD 366
ZCURINX 366
ZCURPOS 366
ZDATE 357
ZDATEF 357
ZDATEFD 357
ZDATESTD 357
ZDAY 357
ZDBCS 363
ZDECS 358
ZDEL 358
ZDEVNAM 365
ZENTKTXT 358
ZENVIR 359
ZERRALRM 366
ZERRHM 366
ZERRLM 366
ZERRMSG 366
ZERRSM 366
ZERRTYPE 366
ZERRWIND 366
ZEURO 359
ZFAMPRT 365
ZFKA 363
ZGE 363
ZGUI 359
ZHILITE 363
ZHINDEX 366
ZHTOP 366
ZIND 366
ZISPFOS 359
ZISPFRC 359
ZJADATE 358
ZJDATE 357
ZKEYHELP 359
ZKEYS 363
ZKLAPPL 363
ZKLNAME 363
ZKLTYPE 363
ZKLUSE 363
ZLANG 359
ZLOGNAME 365
ZLOGO 359
ZLOGON 359
ZLSTLPP 365
ZLSTNAME 365
ZLSTNUML 365
ZLSTTRUN 365
ZMONTH 358
ZOS390RL 359
ZPANELID 359
ZPARENT 366
ZPF01-24 363

system variables (continued)

ZPECTL 363
ZPFFMT 363
ZPFKEY 359
ZPFLxx 363
ZPFSET 363
ZPFSHOW 363
ZPLACE 359
ZPREFIX 359
ZPRIKEYS 364
ZPRIM 366
ZPROFAPP 359
ZSCBR 364
ZSCED 364
ZSCML 364
ZSCRCUR 359, 360
ZSCREEN 364
ZSCREENC 359
ZSCREEND 364
ZSCREENI 359
ZSCREENW 364
ZSCRMAX 360
ZSCRMAXD 364
ZSCRMAXW 364
ZSCROLLA 364
ZSCROLLD 364
ZSCROLLN 364
ZSCTPREF 360
ZSEL 366
ZSPLIT 364
ZSTDYEAR 358
ZSYSICON 360
ZSYSID 360
ZSYSNODE 360
ZSYSPLEX 360
ZTDADD 365
ZTDAMT 365
ZTDLROWS 365
ZTDLTOP 365
ZTDMARK 365
ZTDMSG 365
ZTDRET 365
ZTDROWS 365
ZTDSCRP 365
ZTDSELS 365
ZTDSIZE 365
ZTDSRID 365
ZTDTOP 365
ZTEMPFE 360
ZTEMPN 360
ZTERM 364
ZTERMCID 360
ZTERMCP 360
ZTERMCS 361
ZTHS 361
ZTIME 358
ZTIMEL 358
ZTS 361
ZTSICMD 361
ZTSSCMD 361
ZUCTPREF 361
ZUCTSRCH 360
ZUP 366
ZUSER 361
ZVERB 361
ZWINTTL 361
ZWSCDPG 361

z/0S VIR2.0 ISPF Dialog Developer’s Guide and Reference

system variables (continued)
ZWSCON 361
ZWSOPSYS 361
ZYEAR 358

SYSTSPRT file for error messages 35

T

tab stop in skeleton definition 305
tabbing
alternate 305
standard 305
table
accessing data 71, 369
adding rows dynamically 45, 369
definition 3
dynamic expansion 131
temporary or permanent 70, 369
when created or updated 3
table display (TBDISPL), terms related
to 130
table display output example 141, 142
table display panel definition
attribute section 134
body section 135
example 139
example of multiple model lines 141
initialization section 137
message location 102
model line 43, 130
model section 136
scroll field location 102
short message area content 102
using the TBDISPL service 129
table rows
number of selected upon return from
table display 365
number of system variable containing
upon return from table display 365
system variable containing 365
table services
determining table size 73, 369
example 73, 74, 369
protecting resources 72, 369
row operation 72, 369
using 70, 72, 369
tags, creating dialog elements 91
task abend code on diagnostic panel 338
TB file-tailoring control statement 305
TBA file-tailoring control statement 305
TBDISPL series 133
TBDISPL service
description 139, 369
dynamically building the table 46,
369
terms related to 130
writing dialogs 41, 369
terminal data in batch mode 36
terminal type
specifying ISPTTDEF = 329
system variable containing 364
terminating
a dialog 21
ISPF 9, 10
TERMSTAT parameter on ENVIRON
command 336

TERMTRAC parameter on ENVIRON
command 333
TEST 369
difference from TESTX 25
mode 24
parameter on ISPSTART
command 10
testing dialog elements 4
TESTX
difference from TEST 25
mode 24
parameter on ISPSTART
command 16
TEXT keyboard character
translations 325
TEXT parameter used with TYPE
keyword 198
time and date information (system
variables) 357
title displayed in window frame 358
TOC tutorial command 283
TOG statement 250
top-row-displayed indicator 48, 133, 365,
369
TRACE
difference from TEST and
TRACEX 25
mode 25
parameter on ISPSTART
command 10
TRACEX
difference from TEST and TRACE 25
mode 25
parameter on ISPSTART
command 16
trailing blanks in verified variable 255
TRANS built-in function on assignment
statement
description 230
example 114, 232, 273
example, nested 230, 231
translate tables, specifying 329
translation
common characters 311, 369
GETMSG service 312, 369
messages tagged with CCSID 295,
369
TRANS service 312, 369
TRUNC built-in function on assignment
statement
description 229
example 114, 229, 232
example, nested 230, 231
truncation, system variable containing list
data set 365
TSO
batch environment 33
batch execution 34
command restrictions 26
invoking authorized commands 26
invoking commands 26
TSO command 26, 369
TUTOR command 280
tutorial 111
call of 283
commands 283
defining panels 283

tutorial (continued)
description 280
ending of 284
entry to 283
sample hierarchy of panels 285
sample panel 286
specifying an index page 285
use 283
tutorial panels, system variables that
contain information about 366
TWOBYTE built-in function on
assignment statement 234
TYPE keyword in panel)ATTR
section 173

U

unavail specification in panel)JATTR
section 199

underscore, specifying 187

UP tutorial scroll command 283

UPPERENG keyword on the ISPSTART
command 10, 17

USCORE parameter used with HILITE
keyword 187

used for communication between dialogs
and ISPF 68, 369

user exit for panel processing 242

USER parameter used with PAD
keyword 192

user-selection 134

userid, system variable 361

USERMOD parameter in)ATTR
section 175

\'

validation of DBCS data 111
value from scroll amount field, system
variable 364
variable model lines 137
variable services
creating or deleting defined
variables 64, 369
summary 70, 369
writing dialogs 60, 369
variables
assignment statement 228
COMPOUND 7
creating implicit 64, 369
description of 7
dialog 61, 369
dialog, format 68, 369
in IF or ELSE statements 238
in message definition 298
in VER statements 252
maximum size 7
names too long for panel
definition 278
naming 7
naming defined and implicit
on panels, restricted size 108
owned by ISPF 67, 369
processing using panel user exit 244
read-only extension 66, 369

64, 369

variables (continued)
removing from the shared or profile
pool 66, 369
saving across ISPF sessions 65, 369
sharing among dialogs 65, 369
STEM 7
storing from a panel to shared and
profile pools (VPUT) 265
system variable charts 357
testing the value of 238
to function pool from shared or
profile pools (VGET) 264
value test during panel
processing 240
ZERRCSID 311
ZKEYHELP 95
ZTERMCID 311
ZTERMCP 311
ZTERMCS 311
Variables for ISPSTART parameters 11
VARS variable in table display
panel 137
VCOPY service 69, 369
VDEFINE service
in panel user exit routine 244
writing dialogs 69, 369
VDELETE service 69, 369
VEDIT statement 251
VER statement in panel section
description 252
syntax 253
VERASE service 69, 369
verifying variable content 253
VGET statement
in panel)INIT,)REINIT, or)PROC
section 264
on DISPLAY panel 264
on SELECT panel 264
syntax 264
using 69, 369
VMASK service 69, 369
VPUT statement
example 265
in panel)INIT,)REINIT, or)PROC
section 265
syntax 265
using 69, 369
VREPLACE service 69, 369
VRESET service 69, 369

w

WIDTH keyword in panel)JATTR
section 199
WIDTH keyword in panel)BODY
section 207
WINDOW command 94
WINDOW keyword
defining pop-up windows 107
in panel)BODY section 208
window title variable 91, 92
workstation command 13
workstation command var 13
writing dialogs
display services 41, 369
file-tailoring services 83, 369
miscellaneous services 87, 369

Index

379

writing dialogs (continued)
PDF services 85, 369
table services 70, 369
variable services 60, 369
WSCMD 13
WSCMD parameter on ISPSTART
command 10
WSCMDV 13
WSCMDV parameter on ISPSTART
command 10

Y4

Z system variable 358
Z variables used for field name
place-holders 278
ZACCTNUM system variable 358
ZAPLCNT system variable 358
ZAPPLID system variable 358
ZAPPTTL system variable 358
ZASPECT system variable 365
ZBDMAX system variable 358
ZBDMXCNT system variable 358
ZC system variable 300, 310
ZCMD 351, 369
ZCMD system variable 366
example 114
on tutorial panels 284
processing
blank 115
invalid option 115
truncation 113
versus other names for command
field 102
ZCOLORS system variable 363
in batch mode 36
ZCONT system variable 285, 287, 366
ZCS system variable 358
ZCSDLL system variable 358
ZCUNIT 356, 369
ZCURFLD
general description 221
ZCURFLD system variable 366
ZCURINX
general description 221
ZCURINX system variable 366
ZCURPOS
general description 221
ZCURPOS system variable 366
ZCUSIZE 356, 369
ZDATE system variable 357
ZDATEF system variable 357
ZDATEFD system variable 357
ZDATESTD system variable 357
ZDAY system variable 357
ZDBCS system variable 363
in batch mode 36
ZDECS system variable 358
ZDEL system variable 358
ZDEVNAM system variable 365
ZDLBLKSZ 351, 369
ZDLCDATE 351, 369
ZDLDEV 351, 369
ZDLDSNTP 351, 369
ZDLDSORG 351, 369
ZDLEDATE 351, 369
ZDLEXT 351, 369

ZDLLRECL 351, 369
ZDLMIGR 351, 369
ZDLRDATE 351, 369
ZDLRECFM 351, 369
ZDLSIZE 351, 369
ZDLSPACU 351
ZDLUSED 351, 369
ZDLVOL 351, 369
ZDSN 352, 369
ZDST 352
ZE system variable 300, 310
ZEDBDSN 352, 369
ZEDROW 352, 369
ZEDSAVE 352
ZEDTDSN 352, 369
ZEDTMCMD 352
ZEDTMEM 352, 369
ZEDTRD 352, 369
ZEDUSER 352, 369
ZEIBSDN 352, 369
ZEIROW 352, 369
ZEITDSN 352, 369
ZEIUSER 352, 369
ZENTKTXT 369
ZENVIR system variable 34, 359
ZERRALRM 352, 369
ZERRALRM system variable 366
ZERRHM 352, 369
ZERRHM system variable 366
ZERRLM 353, 369
ZERRLM system variable 366
ZERRMSG 353, 369
ZERRMSG system variable 366
for panel user exit messages 247
ZERRSM 353, 369
ZERRSM system variable 366
ZERRTYPE system variable 366
ZERRWIND system variable 366
ZEURO system variable 359
ZFAMPRT system variable 365
ZFKA system variable 363
ZGE system variable 146, 363
ZGRPLVL 353, 369
ZGRPNME 353, 369
ZGUI system variable 359
ZHILITE system variable 363
in batch mode 37
ZHINDEX system variable 366
example 122
specifying top indexed panel 284
ZHTOP system variable 366
example 122
specifying top tutorial panel 284
ZICFPRT 356, 369
ZIND system variable 366
using on tutorial panels 285
ZISPFOS system variable 359
ZISPFRC system variable
description 22
example of using 23
return codes 359
ZJ4DATE system variable 358
ZJDATE system variable 357
ZKEYHELP system variable 95, 359
ZKEYS system variable 363
ZKLAPPL system variable 363
ZKLNAME system variable 363

380 z/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

ZKLTYPE system variable 363

ZKLUSE system variable 363

ZLAC 353

ZLALIAS 353

ZLAMODE 353

ZLANG system variable 359

ZLATTR 353

ZLC4DATE 353

ZLCDATE 353, 369

ZLCNORC 353, 369

ZLINORC 354, 369

ZLLIB 354, 369

ZLM4DATE 354

ZLMDATE 354, 369

ZLMEMBER 354, 369

ZLMNORC 352, 354, 369

ZLMOD 354, 355, 369

ZILMSEC 354, 369

ZLMTIME 354, 355, 369

ZLOGNAME system variable 365

ZLOGO system variable 359

ZLOGON system variable 359

ZILPDSUDA 354, 369

ZLRMODE 355

ZLSIZE 355

ZLSTLPP system variable 365

ZLSTNAME system variable 365

ZLSTNUML system variable 365

ZLSTTRUN system variable 365

ZLTTR 355

ZLUSER 355, 369

ZIVERS 355, 369

ZMLCOLS 355, 369

ZMLCR 355, 369

ZMLTR 355, 369

ZMONTH system variable 358

ZPARENT system variable 116, 366

ZPDFREL 356, 369

ZPF01-24 system variables 363

ZPFCTL system variable 363

ZPFFMT system variable 363

ZPFKEY system variable 359

ZPFSET system variable 363

ZPFSHOW system variable 363

ZPLACE system variable 359

ZPREFIX system variable 359

ZPRIKEYS system variable 364

ZPRIM system variable 366
example 115, 122
ignored in explicit chain mode 116
using 116

ZPROFAPP system variable 359

ZSCBR system variable 364

ZSCED system variable 364

ZSCLM 355

ZSCML system variable 364

ZSCRCUR system variable 359, 360

ZSCREEN system variable 364

ZSCREENC system variable 359

ZSCREEND system variable 364
in batch environment 36

ZSCREENI system variable 359

ZSCREENW system variable 364
in batch environment 36

ZSCRMAX system variable 360

ZSCRMAXD system variable 364
in batch environment 36

ZSCRMAXD system variable (continued) ZTEMPN system variable 360

panel definition 107 ZTERM, mapped to APL2 terminals 30,
ZSCRMAXW system variable 364 369

in batch environment 36 ZTERM system variable 364

panel definition 107 ZTERMCID system variable 360
ZSCROLLA system variable 135, 364 ZTERMCP system variable 360
ZSCROLLD system variable 135, 364 ZTERMCS system variable 361
ZSCROLLN system variable 135, 364 ZTHS system variable 361
ZSCTPREF system variable 360 ZTIME system variable 358
ZSEL system variable 366 ZTIMEL system variable 358

contains result of truncating ZTS system variable 361

ZCMD 112 ZTSICMD system variable 361

example 114 ZTSSCMD system variable 361

on menus 112 ZUCTPREF system variable 361

on tutorial panels 284 ZUCTSRCH system variable 360

parameters and keywords used ZUP system variable 366

with 113 on tutorial panels 284

restriction for 284 ZUSER system variable 361
ZSESS 356, 369 ZUSERMAC 355
ZSPLIT system variable 364 ZVERB system variable 135, 361
ZSTDYEAR system variable 358 ZWINTTL 92
ZSWIND 356 ZWINTTL system variable 361
ZSYSICON system variable 360 ZWSCDPG system variable 361
ZSYSID system variable 360 ZWSCON system variable 361
ZSYSNODE system variable 360 ZWSOPSYS system variable 361
ZSYSPLEX system variable 360 ZYEAR system variable 358

ZTDADD function variable
definition of 45, 369
using 47, 369
ZTDADD system variable 365
ZTDAMT function variable
definition of 45, 369
using 47, 369
ZTDAMT system variable 365
ZTDLROWS function variable
definition of 46, 369
using 48, 369
ZTDLROWS system variable 365
ZTDLTOP function variable
definition of 46, 369
using 46, 48, 369
ZTDLTOP system variable 365
ZTDMARK system variable 131, 365,
369
ZTDMSG system variable 365, 369
ZTDRET function variable
definition of 45, 369
using 45, 369
ZTDRET system variable 365
ZTDROWS system variable 365, 369
ZTDSCRP function variable
definition of 45, 369
using 47, 369
ZTDSCRP system variable 365
ZTDSELS system variable 138, 365
description 44, 369
example 44, 369
ZTDSIZE function variable
definition of 46, 369
using 48, 369
ZTDSIZE system variable 365
ZTDSRID function variable
definition of 45, 369
using 47, 369
ZTDSRID system variable 365
ZTDTOP system variable 365, 369
ZTEMPF system variable 360

Index 381

382 2/0S V1R2.0 ISPF Dialog Developer’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

Interactive System Productivity Facility (ISPF)
Dialog Developer’s Guide and Reference
z/OS Version 1 Release 2.0

Publication No. SC34-4821-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]] O O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand]]] O Ll
Well organized O O O] U U
Applicable to your tasks O O O] 0 U

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

SC34-4821-01

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SC34-4821-01

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering

Department G7IA / Bldg 503
Research Triangle Park, NC

27709-9990

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370/4300-39
Program Number: 5694-A01

) Printed in the United States of America
& on recycled paper containing 10%
recovered post-consumer fiber.

SC34-4821-01

	Contents
	Figures
	Preface
	About This Book
	Who Should Use This Book
	What Is in This Book?
	Notation Conventions
	Terms Used in This Book

	Using LookAt to look up message explanations
	Accessing licensed books on the Web

	Summary of Changes
	ISPF Product Changes
	ISPF DM Component Changes
	ISPF PDF Component Changes
	ISPF SCLM Component Changes
	ISPF Client/Server Component Changes
	ISPF User Interface Considerations
	ISPF Migration Considerations
	ISPF Profiles
	Year 2000 Support for ISPF

	What’s in the z/OS V1R2.0 ISPF library?
	z/OS V1R2.0 ISPF

	Elements and Features in z/OS
	The ISPF User Interface
	Some Terms You Should Know
	How to Navigate in ISPF without Using Action Bars
	How to Navigate in ISPF Using the Action Bar Interface
	Action Bars
	Action Bar Choices
	Menu Action Bar Choice
	Utilities Action Bar Choice

	Point-and-Shoot Text Fields
	Function Keys
	Selection Fields

	Command Nesting

	Chapter 1. Introduction to ISPF
	What Is ISPF?
	What Is a Dialog?
	Functions
	Variables
	Command Tables
	Panel Definitions
	Message Definitions
	File-tailoring Skeletons
	Tables

	What Does a Dialog Do?
	Developing a Dialog
	How Dialog Elements Interact
	Dialog Variables

	Chapter 2. Controlling ISPF Sessions
	Dialog Control and Data Flow
	Processing a Dialog
	Starting a Dialog
	Syntax for Issuing the ISPSTART Command
	Using the ISPSTART Command
	Invoking a Dialog from a Selection Panel
	Invoking a Dialog from a Master Application Menu

	What the SELECT Service Does
	Invoking the SELECT Service
	Terminating a Dialog
	Return Codes from Terminating Dialogs
	Return Codes from Termination Dialogs

	An Example Using the ZISPFRC Return Code

	ISPF Test and Trace Modes
	Test Modes
	ISPF Trace Modes

	Invoking Authorized Programs
	Invoking TSO Commands
	Compiled REXX Requirements
	CLIST Requirements
	Restrictions to Using Attention Exits from CLISTs
	Examples of CLIST Attention Exit Process Flow
	Single CLIST with One Attention Exit
	Nested CLISTs with Two Attention Exits (One SELECT Level)
	Nested CLISTs with One Attention Exit
	Nested CLISTs and SELECT Levels with One Attention Exit

	Using APL2
	Invoking APL2
	Executing APL2 Functions
	Invoking ISPF Dialog Services in the APL2 Environment
	APL2 Workspace as the ISPF Function Pool
	Interface between ISPF and APL2

	Subtasking Support
	ESTAE Restrictions
	ISPF Services in Batch Mode
	Command Processors in the TSO Batch Environment
	Sample Batch Job
	Processing Errors

	Batch Display Facility for Background Panel Processing
	Supplying Input in Lieu of Interactive Users
	Supplying Batch Terminal Characteristics
	Message Processing in the Batch Environment
	Command Processing in the Batch Environment
	Display Error Processing in the Batch Environment
	How ISPF Handles Log and List Data Sets in the Batch Environment
	Avoiding Panel Loop Conditions in the Batch Environment

	ISPF Graphical User Interface in Batch Mode
	Restrictions
	Example JCL

	Chapter 3. Introduction to Writing Dialogs
	Using the Display Services
	Example: Creating a Display with TBDISPL
	Processing Selected Rows
	Adding Table Rows Dynamically during Table Display Scrolling
	System Variables Are the ISPF-Function Interface
	Using Variable ZTDRET
	Using Variable ZTDADD
	Using Variable ZTDAMT
	Using Variables ZTDSCRP and ZTDSRID
	Using Variable ZTDSIZE
	Using Variables ZTDLTOP and ZTDLROWS

	Example: Dynamic Table Expansion

	Using the Variable Services
	Searching Variable Pools
	SELECT Service and Variable Access
	Function Pools and Dialog Functions
	Command Procedures, Program Functions, and Function Pools
	Use a Variable Service to Create or Delete Defined Variables
	Creating Implicit Variables
	Naming Defined and Implicit Variables
	Sharing Variables among Dialogs
	Saving Variables across ISPF Sessions
	Removing Variables from the Shared or Profile Pool
	Read-Only Profile Pool Extension Variables
	Variables Owned by ISPF
	Variable Formats
	System Variables Communicate between Dialogs and ISPF
	Using VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and VREPLACE
	Using the VGET, VPUT, and VERASE Services
	Summary of Variable Services

	Using the Table Services
	Where Tables Reside
	Accessing Data
	Services That Affect an Entire Table
	Services That Affect Table Rows
	Protecting Table Resources
	Example: Create and Update a Simple Table
	Determining Table Size
	Example: Function Using the DISPLAY, TBGET, and TBADD Services
	Command Procedure Function
	Description of Function Steps

	Specifying DBCS Search Argument Format for Table Services

	Using the File-Tailoring Services
	Skeleton Files
	Example of a Skeleton File

	Example of Using File-Tailoring Services

	Using the PDF Services
	BROWSE, EDIT, and EDREC
	BRIF, EDIF, and EDIREC
	Library Access Services
	Where to Find Examples and Listings of PDF Services

	Using the Miscellaneous Services
	CONTROL Service
	GDDM Services
	GETMSG Service
	LIBDEF Service
	LIST Service
	LOG Service
	PQUERY Service

	Chapter 4. Common User Access (CUA) Guidelines
	Using the Dialog Tag Language to Define Dialog Elements
	Keylists
	Action Bars and Pull-Downs
	Pop-Up Windows
	Moveable Pop-Ups
	WINDOW Command
	Manual Movement
	Pop-Up Movement Considerations

	Field-Level Help
	Extended Help
	Keys Help
	Reference Phrase Help
	START Service

	Chapter 5. Panel Definition Statement Guide
	Introduction to Panel Definition Sections
	Guidelines for Formatting Panels
	Requirements for Specifying Message and Command Line Placement
	Additional Suggestions for Designing Panels
	Example of a CUA Panel Definition

	Factors That Affect a Panel’s Size
	Vertically Scrollable Panels

	Syntax Rules and Restrictions for Panel Definition
	Using Blanks and Comments
	Formatting Items in Lists
	Using Variables and Literal Expressions in Text Fields
	Validating DBCS Strings

	Special Requirements for Defining Certain Panels
	Defining Menus
	NOCHECK Keyword
	MODE Keyword
	EXIT Keyword
	Blank or Invalid Options (‘’ or *,‘?’)
	Defining Primary Option Menus
	Specifying the Next Menu to Display
	Example of a Master Application Menu
	Example of a Primary Option Menu

	Defining Table Display Panels
	Table Display Vocabulary
	Requirements for Attribute Section
	Requirements for Body Section
	Requirements for Model Section
	Requirements for Initialization Section
	Requirements for Reinitialization Section
	Requirements for Processing Section
	Using Control Variables
	Processing Panels by Using the TBDISPL Service

	Formatting Panels That Contain Dynamic Areas
	Panel Processing Considerations
	Character-Level Attribute Support for Dynamic Areas
	Specifying Character Attributes in a Dynamic Area
	Conflict Resolution Between Attributes

	Formatting Panels That Contain a Graphic Area
	Graphics Panel Processing Considerations

	Using DBCS-Related Variables in Panels

	Using Preprocessed Panels
	Restrictions for Using ISPPREP
	Using ISPPREP with the SELECT Service
	Examples of Using ISPPREP

	Handling Error Conditions and Return Codes

	Chapter 6. Panel Definition Statement Reference
	Defining Panel Sections
	Defining the Action Bar Choice Section
	Specifying Action Bar Choices in Panel)BODY Section
	Defining Pull-Down Choices within the)ABC Section

	Defining the Action Bar Choice Initialization Section
	Defining the Action Bar Choice Processing Section
	Defining the Area Section
	Panel Definition Considerations
	Help Panels
	Panel Processing
	Scrollable Area Examples

	Defining the Attribute Section
	Using Default Attribute Characters
	Formatting Attribute Section Statements
	Basic Attribute Types
	Specifying Dynamic Areas
	CUA Panel-Element Types
	Other Attribute Types
	Relationship to Control Variables .ATTR and .ATTRCHAR

	Defining the Body Section
	A Sample Panel Body Section

	Defining the CCSID Section
	Defining the END Section
	Defining the HELP Section
	Specifying the Value for the Field-Name and Help-Panel-Name

	Defining the Initialization Section
	Defining the LIST Section
	Defining the Model Section
	Defining the Panel Section
	Keylist variables
	CUA Display Characteristics
	Command Lines and Long Messages
	Keylist Building and Display
	Undefined or Null Function Keys
	CANCEL and EXIT Execution
	Setting System Control Variables
	Defining the Point-and-Shoot Section
	Defining the Processing Section
	Defining the Reinitialization Section

	Formatting Panel Definition Statements
	The Assignment Statement
	The TRUNC Built-In Function
	The TRANS Built-In Function
	The PFK Built-In Function
	The LVLINE Built-In Function
	The ADDSOSI and DELSOSI Built-In Functions
	The ONEBYTE and TWOBYTE Built-In Functions

	The ELSE Statement
	EXIT and GOTO Statements
	EXIT Statement
	GOTO Statement

	The IF Statement
	Basic IF Value Testing
	IF Statement with VER Constructs
	IF Statement and Boolean Operators

	The PANEXIT Statement
	How to LOAD the Panel User Exit Routine
	How to LOAD a REXX Panel Exit
	Invoking the Panel User Exit Routine
	Parameters Passed from ISPF to the Panel User Exit Routine
	Return Codes and Error Processing
	Using ISPREXPX to Read and Modify Parameters

	The REFRESH Statement
	The TOG Statement
	The VEDIT Statement
	The VER Statement
	The VGET Statement
	DISPLAY Service Panel
	SELECT Service Panel

	The VPUT Statement

	Using ISPF Control Variables
	.ALARM
	.ATTR and .ATTRCHAR
	.ATTR
	.ATTRCHAR
	Using .ATTR and .ATTRCHAR with Table Display Panels
	Things to Remember When Using Attribute Override Control Variables

	.AUTOSEL
	.CSRPOS
	.CSRROW
	.CURSOR
	.HELP
	.HHELP
	.MSG
	.NRET
	.PFKEY
	.RESP
	.TRAIL
	.ZVARS
	Using Z Variables as Field Name Place-Holders

	Chapter 7. ISPF Help and Tutorial Panels
	Processing Help
	Help Requests from an Application Panel
	Keys Help Request from an Application Panel
	Extended Help Request from an Application Panel

	Help Available from a Help Panel
	Ending Help
	ISPF Default Keylist for Help Panels

	The ISPF Tutorial Panels

	Chapter 8. Defining Messages
	How to Define a Message
	Message Display Variations
	Messages Tagged with CCSID
	Modeless Message Pop-Ups
	Message Pop-Up Text Formatting
	English Rules for Message Text Formatting
	Asian Rules for Message Text Formatting
	Substitutable Parameters in Messages

	Syntax Rules for Consistent Message Definition
	DBCS-Related Variables in Messages

	Chapter 9. Defining File-Tailoring Skeletons
	Considerations for Data Records
	Considerations for Control Statements
	Sample Skeleton File
	DBCS-Related Variables in File Skeletons

	Chapter 10. Extended Code Page Support
	Translating Common Characters
	Z Variables
	Panels Tagged with CCSID
	Messages Tagged with CCSID

	GETMSG Service
	TRANS Service
	ISPccsid Translate Load Modules
	ISPccsid Translate Load Module Generation Macro
	ISPCCSID Macro
	Description of Parameters
	ISPccsid Translate Load Module Definition Examples

	KANA and NOKANA Keywords
	Character Translation

	Supported CCSIDs
	Base Code Pages for Terminals
	Adding Translate Tables for Extended Code Page Support
	Base CCSIDs
	Extended Code Page Translate Tables Provided by ISPF
	Example of User-Modifiable ISPF Translate Table

	Appendix A. Character Translations for APL, TEXT, and Katakana
	Appendix B. ISPTTDEF Specify Translate Table Set
	Appendix C. Diagnostic Tools and Information
	ISPF Debug Tools
	Diagnostic Information
	Using the ENVIRON System Command
	ENVIRON Command Syntax and Parameter Descriptions
	Abend Panels Provide Diagnostic Information
	ISPF Statistics Entry in a PDS Directory

	Common Problems Using ISPF
	Messages
	Unexpected Output

	Abend Codes and Information
	Terminal I/O Error Codes
	Register Linkage Conventions
	Obtaining Message IDs
	Installation, Maintenance, and Migration Diagnostics
	Common Installation and Maintenance Problems
	Migration from Version 2 and Version 3 to Version 4.2

	Appendix D. Dialog Variables
	PDF Non-Modifiable Variables

	Appendix E. System Variables
	Time and Date
	General
	ZSCRNAME Examples
	Example 1
	Example 2
	Example 3

	Terminal and Function Keys
	Scrolling
	PRINTG Command
	Table Display Service
	LIST Service
	LOG and LIST Data Sets
	Dialog Error
	Tutorial Panels
	Selection Panels
	DTL Panels or Panels Containing a)PANEL Section

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

